No CrossRef data available.
Published online by Cambridge University Press: 25 February 2011
We have studied the crystallinity and Schottky diode characteristics of GaAs/Si grown by MOCVD. In comparison with two-step growth and GaP/strained layer superlattice techniques, the crystallinity and the Schottky diode characteristics are superior for the GaAs/Si with Al0.5Ga0.5P as an intermediate layer. The GaAs/Si grown with the Al0.5Ga0.5 intermediate layer shows mirror—like surface morphology and an X-ray FMHM of 188 arcs. The ideality factor of the Schottky diode fabricated on the GaAs/Si grown with the Al0.5Ga0.5P intermediate layer is 1.06, but its forward current-voltage characteristic shows a significant leakage current at small forward bias. It is also found that the composition of Al affects strongly the crystallinity and the Schottky characteristics of GaAs/Si.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.