Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T07:52:03.987Z Has data issue: false hasContentIssue false

Copper Valence and Local Environment in Aluminophosphate Glass-Ceramics for Immobilization of High Level Waste from Uranium-Graphite Reactor Spent Nuclear Fuel Reprocessing

Published online by Cambridge University Press:  30 March 2015

Sergey V. Stefanovsky
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Bld. 4, Moscow, 119071Russia.
Andrey A. Shiryaev
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Bld. 4, Moscow, 119071Russia.
Michael B. Remizov
Affiliation:
FSUE Production Association “Mayak”, Lenin st. 13, Ozersk Chelyabinsk reg. 456780Russia
Elena A. Belanova
Affiliation:
FSUE Production Association “Mayak”, Lenin st. 13, Ozersk Chelyabinsk reg. 456780Russia
Pavel A. Kozlov
Affiliation:
FSUE Production Association “Mayak”, Lenin st. 13, Ozersk Chelyabinsk reg. 456780Russia
Boris F. Myasoedov
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, Kosygin st. 19, Moscow
Get access

Abstract

Copper valence and environment in two sodium aluminophosphate glasses suggested for immobilization of HLW from reprocessing of spent fuel of uranium-graphite channel reactor (Russian AMB) were studied by XRD, SEM/EDX, XAFS and EPR. Target glass formulations contained ∼2.4-2.5 mol.% CuO. The quenched samples were predominantly amorphous. The annealed MgO free sample had higher degree of crystallinity than the annealed MgO-bearing sample but both them contained orthophosphate phases. Cu in the materials was partitioned in favor of the vitreous phase. In all the samples copper is present as major Cu2+ and minor Cu+ ions. Cu2+ ions form planar square complexes (CN=4) with a Cu2+-O distance of 1.93-1.95 Å. Two more ions are positioned at a distance of 2.76-2.86 Å from Cu2+ ions. So the Cu2+ environment looks like a strongly elongated octahedron as it also follows from the absence of the pre-edge peak due to 1s→3d transition in Cu K edge XANES spectra of the materials. Cu+ ions form two collinear bonds at Cu+-O distances of 1.80-1.85 Å. Thus average Cu coordination number (CN) in the first shell was found to be 2.7-3.0.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stefanovsky, S.V., Yudintsev, S.V., Giere, R., Lumpkin, G.R., “Nuclear Waste Forms,” Energy, Waste and the Environment: A Geological Perspective, ed. Giere, R. and Stille, P. (Geological Society, London, 2004) pp. 3763.Google Scholar
Musinu, A., Piccaluga, G., Pinna, G., Vlaic, G., Narducci, D., and Pizzini, S., J. Non-Cryst. Solids, 136, 198 (1991).CrossRefGoogle Scholar
Bae, B.-S. and Weinberg, M.C., J. Non-Cryst. Solids, 168, 223 (1994).CrossRefGoogle Scholar
Khattak, G.D., Salim, M.A., Hallak, A.B., Daous, M.A., Wenger, L.E., and Thompson, D.J., J. Mater. Sci. 30, 4032 (1995).CrossRefGoogle Scholar
Koo, J., Bae, B.-S., and Na, H.-K., J. Non-Cryst. Solids. 212, 173 (1997).CrossRefGoogle Scholar
Shih, P.Y., Yung, S.W., and Chin, T.S., J. Non-Cryst. Solids. 224, 143 (1998).CrossRefGoogle Scholar
Shih, P.Y., Yung, S.W., and Chin, T.S., J. Non-Cryst. Solids. 244, 211 (1999).CrossRefGoogle Scholar
Metwalli, E., Karabulut, M., Sidebottom, D.L., Morsi, M.M., and Brow, R.K., J. Non-Cryst. Solids. 344, 128 (2004).CrossRefGoogle Scholar
Chahine, A., El-Tabirou, M., and Pascal, J.L., Mater. Lett. 58, 2776 (2004).CrossRefGoogle Scholar
Chahine, A., El-Tabirou, M., Elbenaissi, M., Haddad, M., and Pascal, J.L., Mater. Chem. Phys. 84, 341 (2004)CrossRefGoogle Scholar
Hoppe, U., Kranold, R., Barz, A., Stachel, D., Schöps, A., and Hannon, A.C., Phys. Chem. Glasses. 48, 188 (2007).Google Scholar
Giridhar, G., Ragnacharyulu, M., Ravikumar, R.V.S.S.N., and Sambasiva Rao, P., J. Mater. Sci. Technol. 25, 531 (2009).Google Scholar
Vedeanu, N., Magdas, D.A., and Stefan, R., J. Non-Cryst. Solids. 358, 3170 (2012).CrossRefGoogle Scholar
Magdas, D.A., Stefan, R., Toloman, D., and Vedeanu, N., J. Mol. Struct. 10561057, 314 (2014).CrossRefGoogle Scholar
Bogomolova, L.D., Jachkin, V.F., Lazukin, V.N., and Schmukler, V.A., J. Non-Cryst. Solids. 27, 427 (1978).CrossRefGoogle Scholar
Bogomolova, L.D., Jachkin, V.F., Lazukin, V.N., Pavlushkina, T.K., and Schmukler, V.A., J. Non-Cryst. Solids. 28, 375 (1978).CrossRefGoogle Scholar
Griscom, D.L., J. Non-Cryst. Solids. 40, 211 (1980).CrossRefGoogle Scholar
Remizov, M.B., Belanova, E.A., Stefanovsky, S.V., Myasoedov, B.F., Nikonov, B.S., Glass Phys. Chem. 40, 534 (2014).CrossRefGoogle Scholar
Stefanovsky, S.V., Nikonov, B.S., Remizov, M.B., Kozlov, P.V., Belanova, E.A., Shiryaev, A.A., and Zubavichus, Ya.V., Phys. Chem. Mater. Treat. (Russ.) [5], 74 (2014).Google Scholar
Stefanovsky, S.V., Myasoedov, B.F., Remizov, M.B., Kozlov, P.V., Belanova, E.A., Shiryaev, A.A., and Zubavichus, Ya.V., Doklady Chemistry, 457, 148 (2014).CrossRefGoogle Scholar
Ravel, B. and Newville, M., J. Synchrotron Radiat. 12, 537541 (2005).CrossRefGoogle Scholar
Ankudinov, A.L. and Rehr, J.J., Phys. Rev. B 56 17121716 (1997).CrossRefGoogle Scholar
Grunes, L.A., Phys. Rev. B27, 21112131 (1983).CrossRefGoogle Scholar