Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:52:22.023Z Has data issue: false hasContentIssue false

Co-Optimization of Si Thin-Film Deposition and Excimer Laser Anneal Processes for Fabrication of High-Performance p-Si TFTs

Published online by Cambridge University Press:  10 February 2011

A.T. Voutsas
Affiliation:
Sharp Microelectronics Tech., Inc., CSEC Group, 5700 NW Pacific Rim Blvd., Camas, WA 98607, [email protected]
A. Marmorstein
Affiliation:
EE Department, Oregon Graduate Institute, Beaverton, OR, 97006
R. Solanki
Affiliation:
EE Department, Oregon Graduate Institute, Beaverton, OR, 97006
Get access

Abstract

In this work we have co-optimized the deposition and excimer laser crystallization processes for formation of high quality, low-temperature, p-Si films (LPS). We have found that the post-ELA polysilicon structure is very sensitive to deposition process adjustments, collectively expressed by the deposition rate. At low rates the PECVD Si-film is deposited in the microcrystalline phase (µc-Si). Comparing µc-Si and a-Si film precursors, we have shown that at equivalent annealing conditions (laser energy density) polysilicon films obtained from µc-Si precursor demonstrate improved crystallinity (grain size, defect density). Polysilicon thin film transistors (p-Si TFTs) have been fabricated and characterized using this material and compared to our standard process. We have found that the performance of µc-Si precursor exceeds by 20-50% that of a-Si precursor. Use of µc-Si precursor may also have important implications in reducing substrate damage during ELA process and for widening the ELA process window.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morimoto, Y., Hirano, K., Abe, H., Kuwahara, T., Hasegawa, I., Yuda, S., Sotani, N. and Yoneda, K.: Proc. IEDM95, p. 837 (1995).Google Scholar
2. Morita, T., Yamamoto, Y., Itoh, M., Yoneda, Y., Yamane, Y., Tsuchimoto, S., Funada, F. and Awane, K.: Proc. 1EDM 95, p. 841 (1995).Google Scholar
3. Kouvatsos, D.N., Voutsas, A.T. and Hatalis, M.K.: IEEE Trans. Electron Devices 43, p.1399 (1996).Google Scholar
4. Lin, H.Y., Chang, C.Y., Lei, T.F., Liu, F.M, Yang, W.L., Cheng, J.Y., Tseng, H.C. and Chen, L.P.: IEEE Electron Device Lett. 17, p. 503 (1996).Google Scholar
5. Chen, S. and Hsieh, I.C.: Solid State Commun. 39, p. 113 (1996).Google Scholar
6. Voutsas, A.T., Jpn. J. Appl. Phys., 37, p. 388 (1998).Google Scholar
7. Hsieh, I.C., Chen, S., Kuo, C.H., Sigmon, T.W. and Maracas, G.N.: EuroDisplay 96 Dig., p. 295 (1995).Google Scholar
8. Anderson, G.B., Boyce, J.B., Fork, D.K., Johnson, R.I., Mei, P. and Ready, S.E.: Mater. Res. Soc. Symp. Proc. 343, p.709 (1994).Google Scholar
9. Voutsas, A.T. and Hatalis, M.K.: J. Electron. Mater. 23, p.319 (1994).Google Scholar
10. Voutsas, A.T. and Hatalis, M.K.: J. Appl. Phys. 76, p. 777 (1994).Google Scholar
11. Matsuyama, T., Baba, T., Tanaka, M., Tsuda, S., Nishiwaki, H., Nakano, S., Hanafusa, H. and Kuwano, Y.: Mat. Res. Soc. Symp. Proc. 275, p. 256 (1992).Google Scholar
12. Fuhs, W. in Amorphous and Microcrystalline Semiconductor Devices (Vol. II), edited by Kanicki, J., (Artech House, Norwood, MA, 1992), p. 211.Google Scholar