Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T03:57:20.744Z Has data issue: false hasContentIssue false

Cooperative Dislocation Generation And The Brittle-To-Ductile Transition

Published online by Cambridge University Press:  15 February 2011

M. Khantha
Affiliation:
Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, PA 19104-6272.
D. P. Pope
Affiliation:
Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, PA 19104-6272.
V. Vitek
Affiliation:
Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, PA 19104-6272.
Get access

Abstract

The characteristic features of the brittle-to-ductile transition are explained using a model of cooperative dislocation generation. In two dimensions, the onset of the ductile behavior corresponds to a thermally-driven, stress-assisted dissociation of many atomic-size dislocation dipoles in the vicinity of the crack tip above a critical temperature Tc. The instability is caused by thermally induced screening of dislocation interactions as in the Kosterlitz-Thouless phase transition. However, the critical temperature is well below the melting temperature in the presence of a stress. The nature of dislocation dynamics in the vicinity of the crack tip is also described and its role in the onset of the cooperative instability is examined. The origin of the correlation between the strain-rate dependence of the transition temperature and the temperature dependence of dislocation mobility is explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knott, J. F., Fundamentals of Fracture Mechanics (Revised), Butterworths: London (1979).Google Scholar
2. Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, Wiley: New York (1989).Google Scholar
3. Vehoff, H., Ordered Intermetallics – Physical Metallurgy and Mechanical Behavior (edited by Liu, C. T., Cahn, R. W. and Sauthoff, G.), Kluwer, NATO ASI Series E: Vol.213, p. 299 (1992).Google Scholar
4. Vehoff, H., High-Temperature Ordered interinetallic Alloys V (edited by Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H.), Materials Research Society, Vol.288, p.71 (1993).Google Scholar
5. Thomson, R., Materials Science and Engineering A 176, 1 (1994).Google Scholar
6. John, C. St., Philos. Mag. 32, 1193 (1975).Google Scholar
7. Brede, M. and Haasen, P., Acta Metall. 36, 2003 (1988).Google Scholar
8. Samuels, J. and Roberts, S. G., Proc. R. Soc. Lond. A 421, 1 (1989).Google Scholar
9. Michot, G. and George, A., Scr. Metall. 20, 1485 (1986).Google Scholar
10. Brede, M., Hsia, K. J. and Argon, A. S., J. Appl. Phys. 70, 758 (1991).Google Scholar
11. Hirsch, P. B. and Roberts, S. G., Philos. Mag. A 64, 55 (1991).Google Scholar
12. Zielinski, W., Lii, M. J. and Gerberich, W. W., Acta Metall. Mater. 40, 2861 (1992).Google Scholar
13. Brede, M., Acta Metall. Mater. 41, 211 (1993).Google Scholar
14. George, A. and Michot, G., Materials Science and Engineering A 164, 118 (1993).Google Scholar
15. Michot, G., Oliveira, A. L. de and George, A., Materials Science and Engineering A 176, 99 (1994).Google Scholar
16. Hsia, K. J. and Argon, A. S., Mat. Sci. & Eng. A 176, 111 (1994).Google Scholar
17. Urabe, N. and Ichinose, H., Trans. ISIJ 18, 279 (1978).Google Scholar
18. Kocks, U. F., Argon, A. S. and Ashby, M. F., Progress in Materials Science 19, 1 (1975).Google Scholar
19. Serbena, F. C. and Roberts, S. G., Acta Metall. Mater. 42, 2505 (1994).Google Scholar
20. Khantha, M., Pope, D. P. and Vitek, V., Phys. Rev. Lett. 73, 684 (1994).Google Scholar
21. Khantha, M., Pope, D. P. and Vitek, V., Scr. Metall. Mater. 31, 1349 (1994).Google Scholar
22. Khantha, M., Scr. Metall. Mater. 31, 1355 (1994).Google Scholar
23. Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).Google Scholar
24. Hirsch, P. B., Roberts, S. G. and Samuels, J., Proc. R. Soc. Lond. A 421, 25 (1989).Google Scholar
25. Schoeck, G., Philos. Mag. A 63, 111 (1991).Google Scholar
26. Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).Google Scholar
27. Rice, J. R. and Beltz, G. E., J. Mech. Phys. Solids 42, 333 (1994).Google Scholar
28. Kosterlitz, J. M. and Thouless, D. J., J. Phys. C:Solid State Phys. 6, 1181 (1973).Google Scholar
29. Nelson, D. R., Phys. Rev. B 18, 2318 (1976).Google Scholar
30. Nelson, D. R. and Halperin, B. I., Phys. Rev. B 19, 2457 (1979).Google Scholar
31. Young, A. P., Phys. Rev. B 19, 1855 (1979).Google Scholar
32. Young, A. P., NATO Advanced Study Institute on Ordering in Strongly Fluctuating Condensed Matter Systems (edited by Riste, T.), Plenum, p. 271 (1980).Google Scholar
33. Williams, G. A., Phys. Rev. Lett. 59, 1926 (1987).Google Scholar
34. Shenoy, S. R., Phys. Rev. B 40, 5056 (1989).Google Scholar
35. Nabarro, F. R. N., Theolr, of Crystal Dislocations, Dover: New York (1967).Google Scholar
36. Reichl, L. E., A Modern Course in Statistical Physics, Univ. of Texas Press: Austin (1980).Google Scholar
37. Lindenberg, K. and West, B. J., The Non-equilibrium Statistical Mechanics of Open and Closed Systems, VCH Publishers: New York (1990).Google Scholar
38. Lund, F., Reisenegger, A. and Utreras, C., Phys. Rev. B 41, 155 (1990).Google Scholar
39. Lund, F., Phvs. Rev. Lett. 69, 3084 (1992).Google Scholar
40. Lipsitt, H. A., Shechtman, D. and Schafrik, E., Metall. Trans. A 6A, 1975 (1975).Google Scholar
41. Thomson, R., Solid St. Phys. 39, 1 (1986).Google Scholar
42. Nitzsche, V. R. and Hsia, K. J., Mat. Sci. & Engg. A 176, 155 (1994).Google Scholar
43. Pearson, G. L., Read, W. T. Jr. and Feldmann, W. L., Acta Metall. 5, 181 (1957).Google Scholar