Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:36:38.833Z Has data issue: false hasContentIssue false

Controlled electrochemical functionalization of MOx nanostructures by Au NPs for gas sensing application

Published online by Cambridge University Press:  19 August 2015

E. Dilonardo*
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy. Department of Electrotechnics and Electronics (DEE), Politecnico di Bari, Bari, Italy.
M. Penza
Affiliation:
ENEA, - Brindisi Research Center, Brindisi, Italy
M. Alvisi
Affiliation:
ENEA, - Brindisi Research Center, Brindisi, Italy
C. Di Franco
Affiliation:
CNR-IFN Bari, Bari, Italy
F. Palmisano
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy.
L. Torsi
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy.
N. Cioffi*
Affiliation:
Department of Chemistry, Università degli Studi di Bari Aldo Moro, Bari, Italy.
*
*Corresponding authors: [email protected], [email protected].
*Corresponding authors: [email protected], [email protected].
Get access

Abstract

Stabilized Au NPs were directly deposited on nanostructured ZnO and ZrO2 by a simple one-step strategy based on sacrificial anode electrolysis. The annealed nanocomposites are proposed as active layers in resistive gas sensors for low-cost processes. Results on the performance of gas sensors based on pristine and Au-doped MOx nanostructured thin films, used for the detection of NO2 gas, were reported at an operating temperature of 300°C, evaluating the effects of the MOx chemical composition and morphology, and the Au-doping.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hjiri, M., El Mir, L., Leonardi, S.G., Donato, N., and Neri, G., , G., Nanomat. 3, 357 (2013).CrossRefGoogle Scholar
Plashnitsa, V.V., Elumalai, P., Fujio, Y., and Miura, N., Electrochim. Acta 54, 6099 (2009).CrossRefGoogle Scholar
Arafat, M.M., Dinan, B., Akbar, A. Sheikh, and Haseeb, A.S.M.A., Sens. 12, 7207 (2012).CrossRefGoogle Scholar
Kanan, S.M., El-Kadri, O.M., Abu-Yousef, I.A., and Kanan, M.C., Sens. 9, 8158 (2009).CrossRefGoogle Scholar
Penza, M., Martucci, C., and Cassano, G., Sens. Act. B 50, 52 (1998).CrossRefGoogle Scholar
Joshi, R.K., Hu, Q., Am, F., Joshi, N., and Kumar, A., J. Phys. Chem. C 113, 16199 (2009).CrossRefGoogle Scholar
Poltorak, O.M., and Boronin, V.S., Russ. J. Phys. Chem. 40, 1436 (1966).Google Scholar
Afzal, A., Di Franco, C., Mesto, E., Ditaranto, N., Cioffi, N., Scordari, F., Scamarcio, G., and Torsi, L., Mater. Express 5, 171 (2015).CrossRefGoogle Scholar
Huang, X., Guo, C., Zuo, J., Zheng, N., and Stucky, G.D., Small 5, 361 (2009).CrossRefGoogle Scholar
Mishra, Y.K., Mohapatra, S., Singhal, R., Avasthi, D.K., Agarwal, D.C., Ogale, S.B., Appl. Phys. Lett. 92, 043107 (2008).CrossRefGoogle Scholar
Penza, M., Rossi, R., Alvisi, M., and Serra, E., , Nanotech. 21, 105501 (2010).CrossRefGoogle Scholar
Rai, P., Kim, Y.-S., Song, H.-M., Song, M.-K., and Yu, Y.-T., Sens. Act. B 165, 133 (2012).CrossRefGoogle Scholar
Rai, P., Kwak, W.-K., and Yu, Y.-T., , Y.-T., ACS Appl. Mater. Interf. 5, 3026 (2013).CrossRefGoogle Scholar