Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T02:27:20.736Z Has data issue: false hasContentIssue false

Control of Silicon Quantum Dots nucleation and growth by CVD

Published online by Cambridge University Press:  11 February 2011

F. Mazen
Affiliation:
LPM-INSA-Lyon, UMR 5511, 2 rue A. Einstein 69621 Villeurbanne, France.
T. Baron
Affiliation:
LTM-CNRS, 17 avenue des Martyrs, 38054 Grenoble, France.
J. M. Hartmann
Affiliation:
CEA-DRT-LETI/DTS-CEA-GRE, 17 avenue des Martyrs, 38054 Grenoble, France.
M. N. Semeria
Affiliation:
CEA-DRT-LETI/DTS-CEA-GRE, 17 avenue des Martyrs, 38054 Grenoble, France.
G. Brémond
Affiliation:
LPM-INSA-Lyon, UMR 5511, 2 rue A. Einstein 69621 Villeurbanne, France.
Get access

Abstract

To be successfully integrated in nano-electronics devices, silicon quantum dots (Si-QDs) density, density uniformity, size and size dispersion must be controlled with a great precision. Nanometric size Si-QDs can be deposited on insulators by SiH4 CVD. Their formation includes two steps : nucleation and growth. We study the experimental parameters which influence each step in order to improve the control of the Si-QDs morphology.

We show that the nucleation step is governed by the reactivity of the substrate with the Si precursors. On SiO2, OH groups are identified as nucleation sites. By controlling the OH density on the SiO2 surface, we can monitor the Si-QDs density on more than one decade for the same process conditions. Moreover, Si-QDs density as high as 1.5 1012 /cm2 can be obtained. On the contrary, the growth step depends on process conditions. By modifying the gas phase composition, i.e by using SiH2Cl2 as Si precursor, we can grow the nuclei already formed during the nucleation step without formation of new Si-QDs. We discuss the advantages of this process to improve the control of the Si-QDs size and limit the size dispersion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tilke, A.T., Simmel, F.C., Blick, R.H., Lorenz, H., Kotthaus, J.P., Prog. Quant. Elec. 25 (2001), 97.Google Scholar
Tiwari, S., Rhana, F., Hanafi, H., Harstein, A., Crabbé, E. F., Chan, K., Appl. Phys. Lett. 68 (1996), 1377.Google Scholar
Baron, T., Martin, F., Mur, P., Wyon, C., Dupuy, M., J. Cryst. Growth 209 (2000), 1004.Google Scholar
[4] Baron, T., Gentile, P., Magnea, N., Mur, P., Appl. Phys. Lett. 79 (2001), 1175.Google Scholar
[5] Baron, T., Mazen, F., Busseret, C., Souifi, A., Mur, P., Séméria, M. N., Moriceau, H., Aspard, B., Gentile, P., Magnea, N., Micr. Engin., 61–62, 511 (2002).Google Scholar
[6] Madhukar, S., Smith, K., Muralidhar, R., O'Meara, D., Sadd, M., Nguyen, B. Y., White, B. and Jones, B., Mat. Res. Soc. Symps. Proc. 638 (2001), F5.2.1. Google Scholar
[7] Nakagawa, K., Fukuda, M., Miyazaki, S., Hirose, M., Mat. Res. Soc. Symp. Proc. 452 (1997), 243.Google Scholar
[8] Mazen, F., Baron, T., Buffet, N., Rochat, N., Mur, P., Brémond, G., Séméria, M. N., J. Electr. Soc., to be published.Google Scholar
[9] Bertin, F., Baron, T., Mariolle, D., Martin, F., Chabli, A., Dupuy, M., Phys. Stat. Sol. 175 (1999), 405.Google Scholar
[10] Vansant, E. F., Van Der Voort, P., Vrancken, K. C., Characterization and chemical modification of the silica surface, Elsevier, Amsterdam (1991).Google Scholar