Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:13:58.015Z Has data issue: false hasContentIssue false

Control of Emissive Layer Interfaces with Inorganic Thin Layer Between 8-Hydroxyquinoline Aluminum and Diamine Layers in Organic El Diode

Published online by Cambridge University Press:  10 February 2011

Yutaka Ohmori
Affiliation:
Osaka University, Department of Electronic Engineering, Yamada-oka, Suita, Osaka 565, Japan, [email protected]
Yoshitaka Kurosaka
Affiliation:
Osaka University, Department of Electronic Engineering, Yamada-oka, Suita, Osaka 565, Japan, [email protected]
Norio Tada
Affiliation:
Osaka University, Department of Electronic Engineering, Yamada-oka, Suita, Osaka 565, Japan, [email protected]
Akihiko Fujii
Affiliation:
Osaka University, Department of Electronic Engineering, Yamada-oka, Suita, Osaka 565, Japan, [email protected]
Katsumi Yoshino
Affiliation:
Osaka University, Department of Electronic Engineering, Yamada-oka, Suita, Osaka 565, Japan, [email protected]
Get access

Abstract

Control of organic interfaces by insertion of a thin inorganic film (SiO) has been investigated for an organic electroluminescent (EL) diode which consists of 8-hydroxyquinoline aluminum (Alq3) and diamine derivative (TPD). In order to evaluate optical quality of the emissive layer at the interface, thin film of emissive marker layer was inserted into the emissive layer at the interface between the emissive layer and the carrier transport layer. The EL emission spectrum and the optical characteristics have been discussed for the EL diode with and without inorganic film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, p.913(1987).Google Scholar
2. Tang, C. W., VanSlyke, S. A. and Chen, C. H., J. Appl. Phys. 65, p. 3610 (1989).Google Scholar
3. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett. 56, p. 799 (1990).Google Scholar
4. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Bums, P. L. and Holmes, A. B.: Nature 347, p. 539 (1990).Google Scholar
5. Ohmori, Y., Uchida, M., Muro, K. and Yoshino, K., Jpn. J. Appl. Phys. 30, p. L1938 (1991).Google Scholar
6. Ohmori, Y., Uchida, M., Muro, K. and Yoshino, K., Jpn. J. Appl. Phys. 30, p. L1941 (1991).Google Scholar
7. Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, p. 1982(1991).Google Scholar
8. Grem, G., Leditzky, G., Ullrich, B. and Leising, G., Adv. Mater. 4, p. 36 (1992).Google Scholar
9. Wu, C. C., Chun, J. K. M., Burrows, P. E., Sturm, J. C., Thompson, M. E., Forrest, S. R. and Register, R. A., Appl. Phys. Lett. 66, p. 653(1995).10.1063/1.114119Google Scholar
10. Kido, J., Shionoya, H. and Nagai, K., Appl. Phys. Lett. 67, p. 2281(1995).Google Scholar
11. Uchida, M., Ohmori, Y., Noguchi, T., Ohnishi, T. and Yoshino, K., Jpn. J. Appl. Phys. 32, p. L921(1993).Google Scholar
12. Fujii, A., Yoshida, M., Ohmori, Y. and Yoshino, K., Jpn. J. Appl. Phys. 34, p. L499(1995).10.1143/JJAP.34.L499Google Scholar
13. Yoshida, M., Fujii, A., Ohmori, Y. and Yoshino, K., Jpn. J. Appl. Phys. 35, p. L397(1996).Google Scholar
14. Ohmori, Y., Uchida, M., Morishima, C., Fujii, A. and Yoshino, K., Jpn. J. Appl. Phys. 32, p. L1663(1993).Google Scholar
15. Han, E. M., Do, L.M., Yamamoto, N. and Fujihira, M., Thin Solid Films 273, p. 202(1996).Google Scholar
16. Han, E. M., Do, L. M., Niidome, Y. and Fujihira, M., Chem. Lett. p. 969(1995).Google Scholar