Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:39:10.988Z Has data issue: false hasContentIssue false

Containerless Polymeric Microsphere Production for Biomedical Applications

Published online by Cambridge University Press:  26 February 2011

W. K. Rhim
Affiliation:
Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109
M. T. Hyson
Affiliation:
Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109
S. K. Chung
Affiliation:
Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109
M. Colvin
Affiliation:
Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109
M. Chang
Affiliation:
Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109
Get access

Abstract

A containerless method that produces highly uniform microspheres (> 50 microns in diameter) from many materials has been developed for biomedical applications. A piezoelectrically vibrated drop generator forms uniform (monodisperse) monomer droplets that are either electrostatically levitated and polymerized using UV irradiation, or free radical polymerized. Spheres of 2-hydroxyethyl methacrylate (HEMA) polymer have been produced with diameters of 155 microns ±1.57%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vanderhoff, J. W. et al., Proc. Am. Chem. Soc., Div. Polym. Sci.: Sci. & Eng., New York Meeting, 54, 587, 1986.Google Scholar
2. Ugelstad, J., Proc. Am. Chem. Soc., Div. Polym. Sci.: Sci. & Eng., New York Meeting, 54, 521, 1986.Google Scholar
3. Bater, R. E., Biomat. Med. Dev. Art. Org. 12 (3–4), 133159, 19841985.Google Scholar
4. Kataoka, K. and Sakurai, Y., in:Proteins at Interfaces, ACS Symposium Series, Anaheim, CA. September, 1986.Google Scholar
5. Berenson, Ronald J. et al., J. Immunological Methods 91:1119, 1986.Google Scholar
6. Chang, Manchium, et. al., Proc. Am. Chem. Soc., Div. Polym. Sci.: Sci. & Eng., New York Meeting, 54, 526, 1986.Google Scholar
7. Chang, Manchium and Colvin, Michael (private communication).Google Scholar
8. Rembaum, Alan et al., Macromolecules 9, 328, 1976.Google Scholar
9. Colvin, Michael, et al., Microspheres: Medical and Biological Applications, edited by Rembaum, Alan and Tokes, Zoltan, (CRC Press, New York, [in press]).Google Scholar
10. Coupek, J., Krivakova, M. and Pokorny, S., J. Polym. Sci., Polym. Symp. 42, 182, 1973.Google Scholar
11. Turkova, J., et al., Biochim. Biophys. Acta, 322, 1, 1973.Google Scholar
12. Tlaskalova, H. et. al., J. Polym. Sci. Symp. 68, 89, 1980.Google Scholar
13. Treleavan, J., et al., The Lancet 7073, Jan 14, 1984.Google Scholar
14. Boys, C.V., Soap Bubbles (Dover Books, New York, 1911, 1959).Google Scholar
15. Fulwyler, M. J. et al., Review of Scientific Instruments 44(2):204206, (1973).Google Scholar
16. Lee, F. C., et al., (IBM Research Laboratory, San Jose, CA, 1985, [preprint]).Google Scholar
17. Kim, K. and Turnbull, R., J. App. Phy. 47(5), (1976).Google Scholar
18. Wuerker, R. F. et al., J. Appl. Phys. 30:342 (1959).Google Scholar
19. Rembaum, A., et al. Patent Application, JPL Case # 16551/CIT Case # 1838 (1985).Google Scholar
20. Rhim, W. K. et al. New Technology Report JPL # 6543/NASA #17023 (1986)Google Scholar
21. Gaudemack, Gustav et al., J. Immunological Methods, 90:179187, 1986.Google Scholar
22. Delmage, J. M. (private communication)Google Scholar