Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T02:16:16.688Z Has data issue: false hasContentIssue false

Contact-Related Deep States in AI-GaInP/GaAs Interface

Published online by Cambridge University Press:  22 February 2011

Z.C. Huang
Affiliation:
Department of Electrical and Computer Engineering and Center for Opto-Electronics of Materials, State University of New York at Buffalo, Buffalo, NY 14260
C.R. Wie
Affiliation:
Department of Electrical and Computer Engineering and Center for Opto-Electronics of Materials, State University of New York at Buffalo, Buffalo, NY 14260
Get access

Abstract

Deep levels have been measured in molecular beam epitaxy grown Ga0.51In0.49P/GaAs heterostructure by double correlation deep level transient spectroscopy. Gold(Au) and Aluminum (Al) metals were used for Schottky contact. A contact-related hole trap with an activation energy of 0.50-0.75eV was observed at the A1/GaInP interface, but not at the Au/GaInP interface. To our knowledge, this contact-related trap has not been reported before. We attribute this trap to the oxygen contamination, or a vacancy-related defect, VIn or VGa. A new electron trap at 0.28eV was also observed in both Au- and Al-Schottky diodes. Its depth profile showed that it is a bulk trap in GaInP epilayer. The temperature dependent current-voltage characteristics (I-V-T) show a large interface recombination current at the GaInP surface due to the Al-contact. Concentration of the interface trap and the magnitude of recombination current are both reduced by a rapid thermal annealing at/or above 450°C after the aluminum deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ishikawa, M., Ohba, Y., Sugawara, H., Yamamoto, M., and Nakanishi, T., Appl. Phys. Lett., 48, 20 (1986)Google Scholar
2. Olson, J.M., Kurtz, S., Kibbler, A.E. and Faine, P., Appl. Phys. Lett., 56, 623 (1990)Google Scholar
3. Chan, Y.J., Pavlidis, D., Razeghi, M., Jaffe, M., and Singh, J., in Proceedings of the Fifteenth International Symposium On GaAs and Related Compounds, Atlanta, edited by Harris, J.S., p 459 (1989)Google Scholar
4. Kawai, H., Kobayashi, T., Nakamura, F., and Taira, K., Electron. Lett., 25, 609 (1989)Google Scholar
5. Horng, R.H., Wuu, D.S., and Lee, M.K., Appl. Phys. Lett., 53, 2614 (1988)Google Scholar
6. Shealy, J.R., Schaus, C.F., and Eastman, L., Appl. Phys. Lett., 48, 242 (1986)Google Scholar
7. Ueda, O., Takeshi, M. and Komeno, J., Appl. Phys. Lett., 54, 2312 (1989)Google Scholar
8. Hsieh, S.J., Patten, E.A., and Wolfe, C.M., Appl. Phys. Lett., 45, 1125 (1984)Google Scholar
9. Feng, S.L., Bourgoin, J.C., Omnes, F. and Razeghi, M., Appl. Phys. Lett., 59, 941 (1991)Google Scholar
10. Paloura, E.C., Ginoudi, A., Kiriakidis, G., Frangis, N., Scholz, F., Moser, M. and Christou, A., Appl. Phys. Lett., 60, 2749 (1992)Google Scholar
11. Wicks, G.W., Koch, M.W., Varriano, J.A., Johnson, F.G., Wie, C.R., Kim, H.M. and Colombo, P., Appl. Phys. Lett., 59, 342 (1991)Google Scholar
12. Huang, Z.C., Wie, C.R., Johnstone, D.K., Stutz, C.E. and Evans, K.R., J. Appl. Phys., 73, 4362 (1993)Google Scholar
13. Lefevre, H. and Schulz, M., Appl. Phys., 12, 45 (1977)Google Scholar
14. Huang, Z.C., Wie, C.R. and Wicks, G.W., submitted.Google Scholar
15. Spicer, W.E., Lindau, I., Skeath, P., Su, C.Y., and Chye, Patrick, Phys. Rev. Lett., 44, 420 (1980)Google Scholar
16. Bourgion, J.C., Stievenard, D., Deresmes, D. and Arroyo, J.M., J. Appl. Phys., 69, 284 (1991)Google Scholar
17. Hasegawa, F., Onomura, M., Mogi, C. and Nannichi, Y., Solid State Electron., 31, 223 (1988)Google Scholar
18. Brillson, L.J., Phys. Rev. Lett., 40, 260 (1978)Google Scholar
19. Wang, S., Fundamentals of Semiconductor Theory and Device Physics, Prentice Hall, Inc., 1989 p. 302 Google Scholar
20. Rothwarf, A., IEEE Trans. Electron. Devices, 29 1513 (1982)Google Scholar
21. Huang, Z.C. and Wie, C.R., Solid State Electron., 36, 767 (1993)Google Scholar
22. Watanabe, K., Yamazaki, H., and Yamada, Kohji, Appl. Phys. Lett., 58, 934 (1991)Google Scholar
23. Xie, K., Wie, C.R., Johnson, D., Wicks, G.W., J. Electron. Mater., accepted for publication.Google Scholar
24. Sze in “Physics of Semiconductor Devices”, second edition, John Wiley & Sons, 1981 p. 285 Google Scholar
25. Sinha, A.K., Smith, T.E., Read, M.H., and Poate, J.M, Solid State Electron., 19, 489 (1976)Google Scholar
26. Chino, K., Solid State Electron., 16, 119 (1973)Google Scholar