Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:13:03.628Z Has data issue: false hasContentIssue false

Conjugated Polymer-Based Flexible Photovoltaic Cells with Controlled Nanostructures

Published online by Cambridge University Press:  26 February 2011

Myung-Su Kim
Affiliation:
[email protected], University of Michigan, Materials Science and Engineering, 2300 Hayward St., Ann Arbor, MI, 48109, United States
Jin-Sung Kim
Affiliation:
[email protected], University of Michigan, Electrical Engineering and Computer Science, Ann Arbor, MI, 48109, United States
Jae Cheol Cho
Affiliation:
[email protected], University of Michigan, Materials Science and Engineering, Ann Arbor, MI, 48109, United States
Max Shtein
Affiliation:
[email protected], University of Michigan, Materials Science and Engineering, Ann Arbor, MI, 48109, United States
L. Jay Guo
Affiliation:
[email protected], University of Michigan, Electrical Engineering and Computer Science, Ann Arbor, MI, 48109, United States
Jinsang Kim
Affiliation:
[email protected], University of Michigan, Materials Science and Engineering, Ann Arbor, MI, 48109, United States
Get access

Abstract

We demonstrate that conjugated polymers (CPs)-based flexible solar cells with well-defined interdigitated donor-acceptor interfaces enhance charge separation and transport. The welldefined straight donor-acceptor interfaces are achieved successful application of nanoimprinting technology to rationally designed energy harvesting and hole transporting conjugated polymers. Nanoimprinting enables the precise and direct nano-scale control of the shape of the donoracceptor interface on both rigid and flexible substrates. Comparison between the performances of the solar cells having imprinted different feature sizes revealed that the short circuit current can be systematically increased by the interfacial area of the heterojunction without affecting the open circuit voltage. The results also showed that the vertically oriented heterojunction facilitate charge transport and allow synergistically improved fill factor, open circuit current, and ensuing energy conversion efficiency beyond the gain of the interfacial area of the heterojunction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guo, L. J., J. Phys. D: Appl. Phys, 37, R123 (2004).10.1088/0022-3727/37/11/R01Google Scholar
2. Tang, C. W., Appl. Phys. Lett, 48, 183185 (1986).Google Scholar
3. Dittmer, J. J., Marseglia, E. A. and Friend, R. H., Advanced Materials, 12, 1270 (2000)10.1002/1521-4095(200009)12:17<1270::AID-ADMA1270>3.0.CO;2-83.0.CO;2-8>Google Scholar
4. Liu, Jinsong, Tanaka, Toru, Sivula, Kevin, Alivisatos, A. Paul and Frechet, Jean M. J., J. Am. Chem., 126, 6550 (2004).Google Scholar
5. Liu, Jinsong, Kadnikova, Ekaterina N., Liu, Yuxiang, McGehee, Michael D. and Fre’chet, Jean M. J., J. Am. Chem., 126, 9486 (2004)10.1021/ja047452mGoogle Scholar
6. Coakley, Kevin M. and McGehee, Michael D., Chem. Mater, 16, 4533 (2004)10.1021/cm049654nGoogle Scholar
7. Coakley, Kevin M., Liu, Yuxiang, McGehee, Michael D., Frindell, Karen L. and Stucky, Galen D., Adv. Funct. Mater., 13, 301 (2003).10.1002/adfm.200304361Google Scholar
8. Yang, Fan, Shtein, Max and Forrest, Stephen R., Nature Materials, 4, 37 (2005)10.1038/nmat1285Google Scholar
9. Chou, S Y, Krauss, P R and Renstrom, P J, Appl. Phys. Lett., 67, 3114 (1995)Google Scholar
10. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. J. and Zhuang, L., J. Vac. Sci. Technol. B, 15, 2897 (1997)10.1116/1.589752Google Scholar
11. Yu, Zhaoning, Deshpande, Paru, Wu, Wei, Wang, Jian and Chou, Stephen Y., Appl. Phys. Lett., 77, 927 (2000)10.1063/1.1288674Google Scholar
12. Hoppe, Harald and Sariciftci, Niyazi Serdar, J. Mater. Res., 19, 1924 (2004)10.1557/JMR.2004.0252Google Scholar
13. Li, Gang, Shrotriya, Vishal, Huang, Jinsong, Yao, Yan, Moriarty, Tom, Emery, Keith and Yang, Yang, Nature Materials, 4, 864 (2005)Google Scholar
14. Ma, Wanli, Yang, Cuiying, Gong, Xiong, Lee, Kwanghee and Heeger, A. J., Adv. Funct. Mater., 15, 1617 (2005)Google Scholar
15. Mihailetchi, V. D., Blom, P. W. M., Hummelen, J. C. and Rispens, M. T., J. Appl. Phys. 94, 6849 (2003)10.1063/1.1620683Google Scholar
16. Frohne, H., Shaheen, S. E., Brabec, C. J., Mu”ller, D. C., Sariciftci, N. S. and Meerholz, K., ChemPhys Chem. 9, 795 (2002)Google Scholar
17. Ramsdale, C. M., Barker, J. A., Arias, A. C., MacKenzie, J. D., Friend, R. H. and Greenham, N. C., J. Appl.Phys., 92, 4266 (2002)Google Scholar
18. Barker, J. A., Ramsdale, C. M. and Greenham, N. C., Phys. Rev. B, 67, 075205 (2003)Google Scholar