Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:02:36.278Z Has data issue: false hasContentIssue false

Confinement Between Rough Substrates: Fluctuation-Induced Forces, and Other Manifestations

Published online by Cambridge University Press:  15 February 2011

Mehran Kardar
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Hao Li
Affiliation:
The James Frank Institute, University of Chicago, Chicago, IL 60637
Get access

Abstract

Most surfaces are rough. In many cases the roughness is self-affine, with a width w that scales with the observation length L as w ∼ LC. We consider the medium confined between two such plates, and discuss how the dependence of various quantities on the separation of plates is modified by their roughness. Specific examples include fluctuation–induced forces, shifts in critical temperatures, and capacitance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mitchell, M.W., and Bonnell, D.A., J Mater. Res. 5, 2244 (1990).Google Scholar
[2] Krim, J., Solina, D.H. and Chiarello, R., Phys. Rev. Lett. 66, 181 (1991).Google Scholar
[3] Eklund, E., Bruinsma, R., Rudnick, J., Phys. Rev. Lett. 67, 1759 (1991).Google Scholar
[4] Mandelbrot, B., “The Fractal Geometry of Nature” (Freeman, San Francisco, 1981).Google Scholar
[5] Vicsek, T., “Fractal Growth Phenomena” (World Scientific, Singapore, 1989).Google Scholar
[6] Kardar, M., in Disorder and Fracture, edited by Charmet, J.C., Roux, S., and Guyon, E., Plenum, New York (1990); T. Hwa and M. Kardar, Phys. Rev. A 45, 7002 (1992).Google Scholar
[7] See, e.g. Dynamics of Fractal Surfaces, edited by Family, F. and Vicsek, T., World Scientific, Singapore (1991).Google Scholar
[8] Casimir, H.B.G., Proc. K. Ned. Akad. Wet. 51, 793 (1948).Google Scholar
[9] Mikheev, L.V., Soy. Phys. JETP 69, 358 (1989).Google Scholar
[10] Ajdari, A., Peliti, L., and Prost, J., Phys. Rev. Lett. 66, 1481 (1991).Google Scholar
[11] Cardy, J.L., Phys. Rev. Lett. 65, 1443 (1990); and references therein.Google Scholar
[12] Nightingale, M.P. and Indekeu, J.O., Phys. Rev. Lett. 54, 1824 (1985).Google Scholar
[13] Peliti, L. and Prost, J., J. Phys. 50, 1557 (1989).Google Scholar
[14] Kleban, P., Phys. Rev. Lett. 67, 2799 (1991).Google Scholar
[15] Fisher, M.E. and Gennes, P.-G. de, C. R. Acad. Sci. Ser. B 287, 207 (1978).Google Scholar
[16] Privman, V. and Fisher, M.E., Phys. Rev. B 30, 322 (1984).Google Scholar
[17] Blöte, H.W.J., Cardy, J.L., and Nightingale, M.P., Phys. Rev. Lett. 56, 742 (1986).Google Scholar
[18] Balian, R. and Duplantier, B., Ann. Phys. (N.Y.) 112, 165 (1978).Google Scholar
[19] Li, H. and Kardar, M., Phys. Rev. Lett. 67, 3275 (1991); H. Li and M. Kardar, Phys. Rev. A, in press (1992).Google Scholar
[20] Gennes, P.-G. de, The physics of Liquid Crystals (Oxford Univ. Press, Oxford, 1974).Google Scholar
[21] Lyra, M.L., Kardar, M., and Svaiter, N.F., MIT preprint (1992).Google Scholar
[22] For a review, see, Israelachvili, J.N. and McGuiggan, P.M., Science, 241, 795 (1988).Google Scholar
[23] For a review, see Barber, M., in “Phase Transitions and Critical Phenomena” Vol. 8, Domb, C. and Lebowitz, J. L. eds. (Academic, London, 1983).Google Scholar
[24] Willis, R.F., (private communication).Google Scholar
[25] Kardar, M. and Indekeu, J.O., Europhys. Lett. 12, 161 (1990).Google Scholar
[26] Li, H. and Kardar, M., Phys. Rev. B 42, 6546 (1990).Google Scholar