Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T04:14:23.296Z Has data issue: false hasContentIssue false

Conduction Band Edge of TiO2-SnO2 Solid Mixtures Tuning for Photoelctrochemical Applications

Published online by Cambridge University Press:  31 January 2011

Justus Simiyu
Affiliation:
[email protected], University of Nairobi, Physics, Nairobi, Kenya
Bernard Aduda
Affiliation:
[email protected], University of Nairobi, box 30197, Nairobi, 00100, United States
Julius Mwakondo Mwabora
Affiliation:
[email protected], University of Nairobi, Physics, Nairobi, Kenya
Get access

Abstract

We report investigation of effect of conduction band edge on the dye injection and transport by preparation of (Ti,Sn)O2 solid mixtures in ratios of 80:20 and 90:10 as possible applications in dye sensitized solar cells. SEM micrographs showed highly porous with nanometer sized particles of around 6 - 10μm diameter. X-ray diffraction patterns showed strong TiO2 anatase peaks with crystal orientation directions (101) being the strongest in both the solid mixtures and in pure TiO2. XPS studies have shown an apparent chemical shift for Ti 2p and O1s core level spectra with an energy difference between the unmodified and the solid mixture being 0.65eV. Initial I-V studies have shown high Voc but low short circuit photocurrent, showing a possible unfavorable band edge shift between the semiconductor and the dye LUMO level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] O'Regan, B., Gratzel, M. Nature 353, 737 (1991).Google Scholar
[2] Nazeeruddin, M.K. Kay, A. Rodicio, I. R. Humphry-Baker, Muller, E. Liska, P. Vlachopoulos, N., Gratzel, M. J. Am. Chem. Soc. 115, 6382 (1993).Google Scholar
[3] Cavicchi, R. Tarlov, M. and Semanchik, S. J. Vacc. Sci. Tech., A8, 2347 (1990).Google Scholar
[4] Cox, D.F. Fryberger, T.B. and Semanchik, S. Surface Science, 224, 121 (1989).Google Scholar
[5] Ciera, A. Cornet, A, Morante, J.R, Oilaizola, S.M. Castino, E. and Gracia, J, Mater. Sci. Eng. B, 66/70, 406 (2000).Google Scholar
[6] Szuber, J. Czempic, G. R, Larcuprete and Adamowicz, B, Sensors & Actuators B 65, 375 (2000).Google Scholar
[7] Lindquist, S.E. Hagfeldt, A. Sodergren, S. Lindstrom, H. in: G. Hodes (Ed.), Wiley, Weinheim, pp. 169200 (2001).Google Scholar
[8] Asbury, J.B. Hao, E. Wang, Y. Gosh, H.N. Lain, T. J. Phys. Chem. B 105, 4545 (2001).Google Scholar
[9] Nasr, C. Kamat, P.V. Hotchandani, S. J. Phys. Chem. 102, 10047 (1998).Google Scholar
[10] Tennakone, K. Kumara, G.R.R.A. Kottegoda, I.R.M. Perera, V.P.S. Chem. Commun. 1999 15 (1999).Google Scholar
[11] Tennakone, K. Bandara, J. Bandaranayake, P.K.M. Kumara, G.R.R.A., Konno, A. Jpn. J. Appl. Phys. 40 L732 (2001)Google Scholar
[12] Kumara, G.R.R.A., Tennakone, K. Perera, V.P.S. Konno, A. Kaneko, S. J. Phys. D: Appl. Phys. 34 868 (2001).Google Scholar
[13] Tennakone, K. Bandaranayake, P.K.M. Jayaweera, P.V.V. Konno, A. Kumara, G.R.R.A., Physica E 14 190196 (2002)Google Scholar
[14] , Weon-Pil, Tai, , Inoue, Kozo, Eosin Y-sensitized nanostructured SnO2/TiO2 solar cells, Materials Letters 57 15081513 (2003).Google Scholar
[15] Tai, Weon-Pil, Solar Energy Materials & Solar Cells 76 6573 (2003)Google Scholar
[16] Tai, Weon-Pil, Inoue, Kozo, Oh, Jae-Hee, Solar Energy Materials & Solar Cells 71 553557 (2002)Google Scholar
[17] Marcela, M. Oliveira, D. Danielle, C. , Schnitzler, and Zarbin, A.J.G., Chem. Mater. 15, 19031909 (2003)Google Scholar
[18] Boschloo, G. Haggman, L. Hagfeldt, A. J. Phys Chem B 110, 13144 (2006)Google Scholar
[19] Laite, E.R, Weber, I.T. Longo, E. Varela, J.A. Adv. Mater. 12, 965 (2000).Google Scholar
[20] Nillsfolk, J. Kristofer, F. Hagfeldt, A. & Boschloo, G. J. Phys. Chem B, 110 (36), 1771517718 (2006)Google Scholar
[21] Schlichthorl, G. Huang, S. Sprague, J. Frank, A. J. Phys Chem B 101, 8141. (1997)Google Scholar