Published online by Cambridge University Press: 01 January 1993
Heterostructure Schottky diode samples each composed of a sub-micron thick layer of intrinsic hydrogenated amorphous silicon-carbon (a-Si1−xCx:H) deposited on an n-type crystalline silicon (c-Si) substrate are used to measure the a-Si1−xCx:H/c-Si band offsets via junction capacitance techniques. The samples range in carbon concentration from x=0.0−0.3. First, a thermally activated capacitance step due to the response of defects at the amorphous/crystalline interface is evident in capacitance vs. temperature spectra taken on all these samples. The bias-dependence of this step’s activation energy provides a direct measure of the a-Si1−xCx:H/c-Si interface potential as a function of c-Si depletion width in each sample. By application of Poisson’s equation, we find that the a-Si1−xCx:H/c-Si conduction band offset ΔEc. increases from 0.00 to 0.10 eV as x increases from 0.00 to 0.26. Second, while under reverse-bias at low temperature, we optically pulsed each sample with c-Si band-gap light to create trapped holes at the a-Si1−xCx:H/c-Si valence band offset ΔEV. By noting the threshold for the subsequent optical release of these trapped holes by sub-band gap light, we found that ΔEV increases from 0.67 to ≥0.83 eV as x increases from 0.00 to 0.26.