Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T23:42:03.315Z Has data issue: false hasContentIssue false

Conducting Thin Films of Ruthenium Oxide Prepared by Mocvd

Published online by Cambridge University Press:  10 February 2011

P. Hones
Affiliation:
EPFL-Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, [email protected]
C.-H. Kohli
Affiliation:
EPFL-Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, [email protected]
R. Sanjinés
Affiliation:
EPFL-Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, [email protected]
F. Lévy
Affiliation:
EPFL-Institut de Physique Appliquée, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, [email protected]
T. Gerfin
Affiliation:
Spectrospin AG, CH-8117 Fallanden, Switzerland
M. Grätzel
Affiliation:
Institut de Chimie Physique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Get access

Abstract

Conducting thin films of RuO2 were grown at temperatures down to 623K on glass by metalorganic chemical vapor deposition (MOCVD). Tris-trifluoroacetylacetonate-ruthenium(III) (Ru(tfa)3) served as precursor. Smooth, specular and well adherent films were deposited, if the reaction gas contained water. The films were investigated by X-ray diffraction, SEM, and fourprobe resistivity measurement. Growth kinetics were also studied by in situ ellipsometry. The results are compared with films prepared by d.c. reactive sputtering before and after annealing. The properties of the MOCVD films, in particular the resistivity (ρ down to 72 μΩcm), are comparable to CVD films deposited at much higher temperatures and sputtered films after high temperature annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krusin-Elbaum, L., Wittmer, M. and Yee, D. S., Appl. Phys. Lett. 50 (26), 1879 (1987).Google Scholar
2. Kolawa, E., So, F. C. T., Pan, E. T. and Nicolt, M. A., Appl. Phys. Lett. 50 (13), 854 (1987).Google Scholar
3. Jia, Q. X. and Anderson, W. A., Appl. Phys. Lett. 57 (3), 304 (1990).Google Scholar
4. Maiwa, H., Ichinose, N. and Okazaki, K., Jpn. J. Appl. Phys. 33, 5223 (1994).Google Scholar
5. Jia, Q. X., Shi, Z. Q., Jiao, K. L. and Anderson, W. A., Thin Solid Films 196, 29 (1991).Google Scholar
6. Mar, S. Y., Liang, J. S., Sun, C. Y. and Huang, Y. S., Thin Solid Films 238, 158 (1994).10.1016/0040-6090(94)90667-XGoogle Scholar
7. Green, M. L., Gross, M. E., Papa, L. E., Schnoes, K. J. and Brasen, D., J. Electrochem. Soc 132 (11), 2677 (1985).Google Scholar
8. Mar, S. Y., Chen, C. S., Huang, Y. S. and Tiong, K. K., Appl. Surf. Sci. 90, 497 (1995).10.1016/0169-4332(95)00177-8Google Scholar
9. Senzaki, Y., Gladfelter, W. L. and Mccormick, F. B., Abstracts of Papers of the American Chemical Society 205 INOR (MAR), n. 93 (1993).Google Scholar
10. Si, J. and Desu, S. B., J. Mater. Res. 8 (10), 2644 (1993).Google Scholar
11. Hones, P., Gerfin, T. and Grätzel, M., Appl. Phys. Lett. 67 (21), 3078 (1995).Google Scholar
12. Gordon, J. G., O'Connor, M. J. and Holm, R. H., Inorg. Chim. Acta 5 (3), 381 (1971).Google Scholar
13. Gerfin, T. and Grätzel, M., in Chemical Vapor Deposition of Refractory Metals and Ceramics, (Mater. Res. Soc. Symp. Proc. 363, Pittsburgh, PA, 1995), p. 45 Google Scholar
14. Regula, M., Ballif, C., Moser, J. and Lévy, F., Thin Solid Films 280, 67 (1996).Google Scholar
15. Ryden, W. D., Lawson, A. W. and Sartain, C. C., Phys. Lett. 26A, 209 (1968).Google Scholar
16. Sakiyama, K., Onishi, S., Ishihara, K., Orita, K., Kajiyama, T., Hosoda, N. and Hara, T., J. Electrochem. Soc. 140 (3), 834 (1993).10.1149/1.2056168Google Scholar
17. Kolawa, E., So, F. C. T., Flick, W., Zhao, X. A., Pan, E. T. and Nicolet, M. A., Thin Solid Films 173, 217 (1989).Google Scholar
18. Lee, J. S., Kwon, H. J., Jeong, Y. W., Kim, H. H. and Kim, C. Y., J. Mater. Res. 11 (11), 2681 (1996).Google Scholar
19. Mutaftschiev, B., in Handbook of Crystal Growth, edited by Hurle, D. T. J. (North-Holland, Amsterdam, 1993), p. 187 Google Scholar
20. Frank, F. C. and Merwe, J. H. v. d., Proc. Roy. Soc. (London) A195, 205 (1949).Google Scholar
21. Awaya, N. and Arita, Y., Jpn. J. Appl. Phys. 32 (9A), 3915 (1993).10.1143/JJAP.32.3915Google Scholar
22. Stumm, T. H. and Berg, H. v. d., Mat. Sci. Eng. B 23, 48 (1994).10.1016/0921-5107(94)90277-1Google Scholar
23. Atkins, P. W., Physical chemistry, 5th ed. (Oxford University Press, Oxford, 1994), p. 998.Google Scholar