Published online by Cambridge University Press: 10 February 2011
Inorganic membranes prepared by the sol gel method are promising candidates for use as filters in separation processes. Conducting supported membranes and coatings have been produced from redispersable nanoscaled crystalline Sb-doped SnO2 powders with a Sb content up to 5 mole % (with respect to Sn). The crystalline particles are monosized (≅4 nm) and fully redispersable in aqueous solution at pH ≥ 8 with a solid content up to 70 wt. %. By thermal treatment at different temperatures and times, the pore size diameter of the material can be adjusted from 4 to 20 nm with a very narrow pore size distribution (∼ ±1 nm) and a total porosity of 63 %, practically independent of the sintering parameters. Uniaxial pressed substrates present similar characteristics with however larger pore size distribution (±5 nm) and 80 % total porosity. Their resistance decreases with sintering temperature and time down to 4 Ω (800 °C 8 h). Fully dispersed aqueous solutions of the powder (25 wt. %) were used to prepare transparent conducting coatings on glass or ceramics by spin-coating. After thermal treatment (1 hour at 550 °C) single layers 200 nm thick exhibited a typical specific electrical resistance ρ = 2.5·10−2 ωcm with transmission in the visible range measured against air of 90%.