Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T21:24:10.005Z Has data issue: false hasContentIssue false

Concurrent Multiscale Modeling of Embedded Nanomechanics

Published online by Cambridge University Press:  21 March 2011

Robert E. Rudd*
Affiliation:
Lawrence Livermore National Laboratory Condensed Matter Physics, L-415 Livermore, CA 94551, USA
Get access

Abstract

We discuss concurrent multiscale simulations of dynamic and temperature-dependent processes found in nanomechanical systems coupled to larger scale surroundings. We focus on the behavior of sub-micron Micro-Electro-Mechanical Systems (MEMS), especially micro-resonators. The coupling of length scales methodology we have developed for MEMS employs an atomistic description of small but key regions of the system, consisting of millions of atoms, coupled concurrently to a finite element model of the periphery. The result is a model that accurately describes the behavior of the mechanical components of MEMS down to the atomic scale. This paper reviews some of the general issues involved in concurrent multiscale simulation, extends the methodology to metallic systems and describes how it has been used to identify atomistic effects in sub-micron resonators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example Drexler, K. E., Nanosystems: molecular machinery, manufacturing and computation, (Wiley, New York, 1992).Google Scholar
2. Goldfarb, I., Hayden, P. T., Owen, J. H. G. and Briggs, G. A. D., Phys. Rev. B 56, 10459 (1997).Google Scholar
3. Nguyen, C. T.-C., Katehi, L. P. B., and Rebeiz, G. M., “Micromachined devices for wireless communications,” Proc. IEEE 86, 1756 (1988).Google Scholar
4. Cleland, A. N. and Roukes, M. L., Appl. Phys. Lett. 69, 2653 (1996); See also http://www.cmp.caltech.edu/∼roukes/images/mrfm.jpg.Google Scholar
5. Stowe, T. D., Yasumura, K., Kenny, T. W., Botkin, D., Wago, K., and Rugar, D., Appl. Phys. Lett. 71, 288 (1997).Google Scholar
6. Carr, D. W., Evoy, S., Sekaric, L., Craighead, H. G., and Parpia, J. M., Appl. Phys. Lett. 75, pp. 920–2 (1999).Google Scholar
7. Medieros-Ribeiro, G., Bratkovski, A.M., Kamins, T. I., Ohlberg, D. A. A. and Williams, R. S., Science, 279, 353 (1998).Google Scholar
8. Belak, J., J. Comp.-Aided Mater. Design 5, 193 (1998).Google Scholar
9. Allen, M. J., Bradbury, E. M., Balhorn, R., Scanning Microscopy, 10, 989 (1996).Google Scholar
10. Rudd, R. E. and Broughton, J. Q., Phys. Stat. Sol. (b) 217, 251–91 (2000).Google Scholar
11. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1985).Google Scholar
12. Oh, D. J. and Johnson, R. A., “Embedded Atom Method for Close-packed Metals,” in Atomistic Simulation of Materials: Beyond Pair Potentials, Vitek, V. and Srolovitz, D. J., eds., Proc. of Int. Symp. on Atomistic Sim. of Mater., Sept. 25-30, 1988 (Plenum, Oxford, 1989), p. 233.Google Scholar
13. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).Google Scholar
14. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Clarendon Press, Oxford, 1987).Google Scholar
15. See for example: Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th ed. (McGraw-Hill, New York, 1991), Vol. II.Google Scholar
16. Kohlho, S., Gumbsch, P., and Fischmeister, H. F., Philos. Mag. A 64, 851 (1991).Google Scholar
17. Tadmor, E. B., Ortiz, M., and Phillips, R., Philos. Mag. A 73, 1529 (1996).Google Scholar
18. Broughton, J. Q., Bernstein, N., Kaxiras, E., and Abraham, F. F., Phys. Rev. B 60, 2391 (1999).Google Scholar
19. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
20. Nakano, A., Lingsong, B., Vashishta, P., and Kalia, R. K., Phys. Rev. B 49, 9441 (1994).Google Scholar
21. Rudd, R. E. and Broughton, J. Q., J. Model. and Sim. of Microsys. 1, 26 (1999).Google Scholar
22. Rudd, R. E. and Broughton, J. Q., Phys. Rev. B 58, R5893 (1998).Google Scholar
23. Rudd, R. E., Proc. of 2000 Intl. Conf. on Modeling and Simulation of Microsystems (MSM2000), March 2000, San Diego, Laudon, M. and Romanowicz, B., eds. (Computational Publications, Boston, 2000), p. 465.Google Scholar
24. Maekawa, K. and Itoh, A., Wear 188 115 (1995).Google Scholar
25. Broughton, J. Q., Meli, C. A., Vashishta, P., and Kalia, R. K., Phys. Rev. B 56, 611 (1997).Google Scholar
26. Cai, W., M. de Koning, Bulatov, V. V. and Yip, S., Phys. Rev. Lett. 85, 3213 (2000).Google Scholar
27. Mohanty, P., Harrington, D. A., Ekinci, K. L., Yang, Y. T., Murphy, M. J. and Roukes, M. L., “Intrinsic Dissipation in High Frequency Micromechanical Resonators,” submitted to Phys. Rev. B, 2000.Google Scholar
28. Fermi, E., Pasta, J., and Ulam, S., “Studies of Nonlinear Problems,” Los Alamos Report LA-1940 (1955).Google Scholar
29. Branginsky, V. B., Mitrofanov, V. P. and Panov, V. I., Systems with Small Dissipation, (Univ. Chicago Press, Chicago, 1985).Google Scholar