Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T00:25:24.676Z Has data issue: false hasContentIssue false

Computational Fluid Dynamics in the Carbon Nanotubes Synthesis by Chemical Vapor Deposition

Published online by Cambridge University Press:  14 December 2012

Alejandro Gómez Sánchez
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
Lada Domratcheva Lvova*
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
Víctor López Garza
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
Ramón Román Doval
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Mujica S/N Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
María de Lourdes Mondragón Sánchez
Affiliation:
Instituto Tecnológico de Morelia, Avenida Tecnológico 1500, C. P. 58120, Morelia, Michoacán, México.
*
*Contact author’s email: [email protected]
Get access

Abstract

In this paper, an experimental study aimed at achieving better control of the deposition patterns of carbon nanotubes (CNTs) is presented. CNTs were grown on a long of reactor by the catalytic chemical vapor deposition (CVD) of a benzene/ferrocene solution at 1073 K. The deposition patterns on the substrate were controlled for process times and carrier gas flow rates. In order to investigate the reaction mechanism and production rate for the growth of CNTs in catalyst CVD, computational fluid dynamics (CFD) model was developed in this study. Then the computational model was integrated with the dynamic model to optimize the process parameters formulating a correlation between turbulence, deposition rate for the growth of carbon nanotubes and parameters as process time and carrier gas flow rate. Scanning electron microscopes (SEM) are used to characterize carbon nanotubes products.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yah, C. S., Simate, G. S., Moothi, K., Maphutha, K. S. and Iyuke, S. E., Trends in Applied Sciences Research, 6, 12701279 (2011)CrossRefGoogle Scholar
Terrones, M., Terrones, H., Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 361 (1813), 2789–806 (2004)CrossRefGoogle Scholar
Fertziger, J. H. and Peric, M., Computational methods for fluid dynamics, 2nd ed. (Springer, Berlin, 1999)CrossRefGoogle Scholar
Endo, H., Kuwana, K., Saito, K., Qian, D., Andrews, R., Grulke, E A., Chem Phys Lett, 387, 307–11 (2004).CrossRefGoogle Scholar