Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T20:41:45.195Z Has data issue: false hasContentIssue false

Compound Semiconductor Nanocrystals formed by Sequential Ion Implantation

Published online by Cambridge University Press:  28 February 2011

C. W. White
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6057
J. D. Budai
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6057
J. G. Zhu
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6057
S. P. Withrow
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6057
R. A. Zuhr
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6057
Y. Chen
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6057
D. M. Hembree Jr.
Affiliation:
The Y-12 Plant, P. O. Box 2009, Oak Ridge, TN 37831
R. H. Magruder
Affiliation:
Vanderbilt University, 24th Avenue S and Garland, Nashville, TN 37212
D. O. Henderson
Affiliation:
Fisk University, Physics Department, Nashville, TN 37208
Get access

Abstract

Ion implantation and thermal processing have been used to synthesize compound semiconductor nanocrystals (SiGe, GaAs, and CdSe) in both SiO2 and (0001) Al2O3. Equal doses of each constituent are implanted sequentially at energies chosen to give an overlap of the profiles. Subsequent annealing results in precipitation and the formation of compound nanocrystals. In SiO2 substrates, nanocrystals are nearly spherical and randomly oriented. In Al2O3, nanocrystals exhibit strong orientation both in-plane and along the surface normal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
2 Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1991).Google Scholar
3 Wilson, W. L., Szajowski, P. F., and Brus, L. E., Science 262, 1242 (1993).Google Scholar
4 Brus, L., J. Phys. Chem. 98, 3575 (1994).Google Scholar
5 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
6 Brus, L.,appl.Phys.A53,465(1991).Google Scholar
7 Jain, R. K. and Lind, R. C., J. Opt. Soc. Am. 73, 647 (1983).Google Scholar
8 Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).Google Scholar
9 Tsunetomo, K., Nasu, H., Kitayama, H., Kawabucki, A., Osaka, Y., and Takiyama, K., Jpn. J. Appl. Phys. 28, 1928 (1989).Google Scholar
10 Potter, B. G. and Simmons, J. H., J. Appl. Phys. 68, 1218 (1990).Google Scholar
11 Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
12 Atwater, H. et al. , Mat. Res. Soc. Sym. Proc. 316, 409 (1994).Google Scholar
13 Shimizu-Iwayama, T., Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Appl. Phys. 75, 7779 (1994).Google Scholar
14 White, C. W. et al. , Mat. Res. Soc. Sym. Proc. 316, 487 (1994).Google Scholar
15 Zhu, J. G. et al. , these proceedings; J D. Budai et al., these proceedings.Google Scholar
16 Tan, Z., Namavar, F., Heald, S. M., and Budnick, J., Appl. Phys. Lett. 63, 791 (1993).Google Scholar
17 Magruder, R. H., Wittig, J. E., and Zuhr, R. A., J. Non Cryst. Solids 163, 162 (1993); R. A. Zuhr, R. H. Magruder, T. A. Anderson, and J. E. Wittig, Mat. Res. Soc. Sym. Proc. 316, 457 (1994).Google Scholar
18 Tsunetomo, K., Kawabuchi, A., Kitayama, H., Osaka, Y., and Nasu, H., Jpn. J. Appl. Phys. 29, 2481 (1990).Google Scholar
19 Holm, R. T., Gibson, J. W., and Palik, E. D., J. Appl. Phys. 48, 212 (1976).Google Scholar