Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T17:01:38.524Z Has data issue: false hasContentIssue false

Composition-Structure Relations in Organically Modified Silica Gels

Published online by Cambridge University Press:  10 February 2011

Nicola Hüsing
Affiliation:
Institut für Anorgamische Chemie, Technische Universität Wien, Getreidemarkt 9, A- 1060 Wien, Austria, [email protected]
Ulrich Schubert
Affiliation:
Institut für Anorgamische Chemie, Technische Universität Wien, Getreidemarkt 9, A- 1060 Wien, Austria, [email protected]
Get access

Abstract

Monolithic silica aerogels modified by functional organic groups were prepared by basecatalyzed sol-gel processing of Si(OR)4 / R'Si(OMe)3 mixtures (R' = organofunctional group), followed by drying of the wet gels with supercritical CO2. When the functional organic group has only weakly or no basic properties, the microstructure of the obtained aerogels is similar to that of an unmodified silica aerogel prepared under the same conditions and quite independent of the kind of functional group. The experimental findings are explained by a two-stage process in which the R'Si≡ units condense to a pre-formed gel network obtained by hydrolysis and condensation of Si(OR)4. An increasing portion of R'Si(OMe)3 has the same effects on the hydrolysis and condensation reactions as decreasing the bulk density of an unmodified silica aerogel and the same structural consequences as increasing the water / silane ratio and the catalyst concentration acting on Si(OR)4. This leads to larger primary particles and, associated with that, smaller specific surface areas. The two-stage process is not observed when R' contains a strongly basic substituent such as NH2 or NHCH2CH2NH2. The structural parameters indicate that in these cases both R'Si(OMe)3 and Si(OR)4 are involved in the built-up of the gel network. This can be explained by extensive hydrogen bonding between the amino groups and silanol groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hüsing, N. and Schubert, U., Angew. Chem. 110, 22 (1998); Angew. Chem Int. Ed. Engl. 22, 37 (1998).10.1002/(SICI)1521-3757(19980116)110:1/2<22::AID-ANGE22>3.0.CO;2-93.0.CO;2-9>Google Scholar
2. Wang, P., Emmerling, A., Tappert, W., Spormann, O., Fricke, J. and Haubold, H.-G., J. Appl. Crystallogr. 24, 777 (1991).10.1107/S0021889891002327Google Scholar
3. Schwertfeger, F., Glaubitt, W. and Schubert, U., J. Non-Cryst. Solids 145, 85 (1992). U. Schubert, F. Schwertfeger, N. Hüsing and E. Seyfried, Mat. Res. Soc. Symp. Proc. 346, 151 (1994). F. Schwertfeger, N. Hüsing and U. Schubert, J. Sol-Gel Sci. Technol. 2, 103 (1994). N. Hüsing, F. Schwertfeger, U. Schubert and W. Tappert, J. Non-Cryst. Solids 186, 37 (1995). N. Husing and U. Schubert, J. Sol-Gel. Sci. Technol. 8, 807 (1997).10.1016/S0022-3093(05)80435-1Google Scholar
4. Emmerling, A., Petricevic, R., Beck, A., Wang, P., Scheller, H. and Fricke, J., J. Non-Cryst. Solids 185, 240 (1995).10.1016/0022-3093(95)00021-6Google Scholar
5. Scherer, G. W., Smith, D. M. and Stein, D., J. Non-Cryst. Solids 186, 309 (1995).10.1016/0022-3093(95)00058-5Google Scholar
6. Lowen, K. W. and Broge, E. C., J. Phys. Chem. 65, 16 (1961).10.1021/j100819a006Google Scholar
7. Hiusing, N., Schubert, U., Riegel, B. and Kiefer, W., Mat. Res. Soc. Symp. Proc. 435, 339 (1996). B. Riegel, S. Plitterdorý W. Kiefer, N. Hüsing and U. Schubert, J. Mol. Struct. 410&411, 157(1997).10.1557/PROC-435-339Google Scholar
8. Emmerling, A., Gross, J., Gerlach, R., Goswin, R., Reichenauer, G., Fricke, J. and Haubold, H.-G., J. Non-Cryst. Solids 125, 230 (1990). A. Emmerling, P. Wang, G. Popp, A. Beck and J. Fricke, J. Phys. 3, 357 (1993).10.1016/0022-3093(90)90853-EGoogle Scholar
9. Schaefer, D. W., Science 243, 1023 (1989); MRS Bull. 24(4), 49 (1994).10.1126/science.243.4894.1023Google Scholar
10. Matsoukas, T. and Gulari, E., J. Colloid Interface Sci. 124, 252 (1988).10.1016/0021-9797(88)90346-3Google Scholar
11. Keefer, K. T., Mat. Res. Soc. Symp. Proc. 73, 295 (1986). K. D. Keefer and D. W. Schaefer, Phys. Rev. Lett. 56, 2199, 2376 (1986).10.1557/PROC-73-295Google Scholar
12. Himmel, B., Buirger, H., Gerber, T., Olbertz, A., J. Non-Cryst. Solids 185, 56 (1995).10.1016/0022-3093(94)00668-7Google Scholar
13. Plueddemann, E. P., Silane Coupling Agents (Plenum Press, New York 1991) p.63. C. Rousseau, C. Poinsignon, J. Garcia and M. Popall, Chem. Mater. 7, 828 (1995).10.1007/978-1-4899-2070-6Google Scholar
14. Riegel, B. and Kiefer, W. (private communication).Google Scholar