Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T10:51:15.791Z Has data issue: false hasContentIssue false

Compositional Disorder, Magnetism, and Their Interplay in Metallic Alloys

Published online by Cambridge University Press:  25 February 2011

D. D. Johnson
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
J. B. Staunton
Affiliation:
University of Warwick, Coventry, U. K. CV4 7AL
F. J. Pinski
Affiliation:
University of Cincinnati, Cincinnati, OH 45220
B. L. Gyorffy
Affiliation:
University of Bristol, Bristol, U. K. BS8 1TL
G. M. Stocks
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Chemical disorder leads to a variety of intriguing phenomena in alloys which have yet to be fully understood, particularly those phenomena occuring when chemical and magnetic effects interplay with one another. For example, magnetic order gives rise to chemical ordering in alloys, as in Ni-rich NiFe alloys. Two examples of the interplay of chemical disorder and magnetism will be discussed. Our recently developed ab-initio Landau (mean-field) theory for calculating the chemical-chemical, magneto-chemical, and magnetic-magnetic correlation functions in substitutional random alloys is used to describe electronic/magnetic mechanisms (e.g. in FeV) which give rise to the chemical short-range order as determined by neutron, X-ray, or electron diffuse scattering intensities. New developments within this approach that account for charge rearrangement effects will be mentioned. These calculations are performed within the multiplescatteringframework, developed by Korringa, Kohn, and Rostoker (KKR), combined with the coherent potential approximation (CPA) to describe the disorder. This approach allows a firstprinciples description of the electronic structure of the high-temperature, chemically disordered state and its instability to ordering at low temperatures. This method provides not only a direct comparison of diffuse scattering data with theory but a means to understand more fully the underlying mechanisms which drive chemical and/or magnetic ordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Gyorffy, B.L., Johnson, D.D., Pinski, F.J., Nicholson, D.M., and Stocks, G.M., in Alloy Phase Stabiiy, NATO-ASI Series E163, Stocks, G.M. and Gonis, A., eds., (Kluwer, The Netherlands 1989), pp. 421468.Google Scholar
[2] Cable, J.W and Medina, R.A., Phys. Rev. B13, 4868 (1976).CrossRefGoogle Scholar
[3] Chikazurin, S. and Graham, C. D. Jr., Magnetism and Metallurgy, edited by Birkowitz, A. E. and Kneller, E. (Academic, New York, 1969) Vol. II, p.577.Google Scholar
[4] Schweika, W., proceedings Fall MRS 1989, Mat. Res. Soc. Symp. 166, (1990).Google Scholar
[5] Kouvel, J. S., Magnetism and Metallurgy, edited by Birkowitz, A. E. and Kneller, E. (Academic, New York, 1969) Vol. II, p. 523.Google Scholar
[6] Johnson, D.D., Nicholson, D.M., Pinski, F.J., Gyorffy, B.L., and Stocks, G.M., Phys. Rev. Lett. 56, 2088 (1986); and Johnson, D.D., et al., Phys. Rev. B4., 9701 (1990).Google Scholar
[7] Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
[8] Korringa, J., Physica. 13, 392 (1947); W. Kohn and N. Rostoker, Phys. Rev. 94, 11 (1954).Google Scholar
[9] Soven, P., Phys. Rev 156, 809 (1967).Google Scholar
[10] Johnson, D. D., Staunton, J.B., Pinski, F. J., Stocks, G. M., and Gyorffy, B. L., Proceedings of the Fourth International Supercomputing Meeting, 1989, Santa Clara, CA, pg. 72.Google Scholar
[11] Johnson, D. D., Pinski, F. J., and Staunton, J. B., J. Appl. Phys. 61, 3715 (1987).CrossRefGoogle Scholar
[12] Johnson, D.D., Pinski, F.J., Staunton, J.B., Gyorffy, B.L., and Stocks, G.M., invited contribution, in Physical Metallurgy of Controlled Expansion “INVAR-type” Alloys, Russell, K.C. and Smith, D., eds. (The Metallurgical Society, 1989).Google Scholar
[13] Staunton, J. B., Gyorffy, B. L., Johnson, D. D., Pinski, F. J. and Stocks, G. M., Alloy Phase Stability, eds. Stocks, G. M. and Gonis, A., NATO-ASI Series B: Physics, (KLUWER Publishing, The Netherlands,1989); for preliminary work see, J. B. Staunton, D. D. Johnson, and B. L. Gyorffy, J. Appl. Phys. 61, 3693 (1987).Google Scholar
[14] Gyorffy, B. L. and Stocks, G. M., Phys. Rev. Lett. 50, 374 (1984).Google Scholar
[15] Pinski, F. J., Nicholson, D. M., Butler, W. H., Stocks, G. M., Johnson, D. D., and Gyorffy, B. L., Proceedings of the Third International Supercomputing Meeting, Boston, MA, May 15-20 (1988).Google Scholar
[16] Johnson, D.D., Staunton, J.B., Györffy, B.L., Pinski, F.J., and Stocks, G.M., Fall 1989 MRS, Mat. Res. Soc. Symp. Proc., 166, 231 (1990).Google Scholar
[17] Cable, J. W. and Brundage, W. E., J. Appl. Phys. 53 (1982).Google Scholar
[18] Heine, V. and Sampson, J. H., J. Phys. F12, 2155 (1983).Google Scholar
[19] Johnson, D. D., Pinski, F. J., and Stocks, G. M., J. Appl. Phys. 51, 3018 (1985).CrossRefGoogle Scholar
[20] Chung, Ying-Yu, Ksieh, Ken-Change, and Chang, Y. Austin, Metall. Trans. A11, 1373 (1986).CrossRefGoogle Scholar
[21] Staunton, J.B., Johnson, D.D., and Pinski, F.J., Phys. Rev. Lett. 65, 1259 (1990).CrossRefGoogle Scholar
[22] Cable, J., Child, H.R., and Nakai, Y., Physica 156 & 157B, 50 (1989).Google Scholar
[23] Schweika, W. and Haubold, H.-G., Phys. Rev. B37, 9240 (1988); and, B. Schönfeld, et al., Phys. Stat. Sol. (b) 148, 457 (1988).Google Scholar
[24] Turchi, P.E.A. et al. , Mat. Res. Soc. Symp. 166, 231 (1990).Google Scholar
[25] A detailed paper is currently being prepared for publication.Google Scholar