Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:50:24.745Z Has data issue: false hasContentIssue false

Composition and Structure of Sputter Deposited Erbium Hydride thin Films

Published online by Cambridge University Press:  10 February 2011

D.P. Adams
Affiliation:
Sandia National Laboratories, P.O.Box 5800, Albuquerque, NM, 87185
J.A. Romero
Affiliation:
Sandia National Laboratories, P.O.Box 5800, Albuquerque, NM, 87185
M.A. Rodriguez
Affiliation:
Sandia National Laboratories, P.O.Box 5800, Albuquerque, NM, 87185
J.A. Floro
Affiliation:
Sandia National Laboratories, P.O.Box 5800, Albuquerque, NM, 87185
J.C. Banks
Affiliation:
Sandia National Laboratories, P.O.Box 5800, Albuquerque, NM, 87185
Get access

Abstract

Erbium hydride thin films are grown onto polished, a-axis α Al2O3 (sapphire) substrates by reactive ion beam sputtering and analyzed to determine composition, phase and microstructure. Erbium is sputtered while maintaining a H2 partial pressure of 1.4 ×10−4 Torr. Growth is conducted at several substrate temperatures between 30 and 500°C. Rutherford backscattering spectrometry (RBS) and elastic recoil detection analyses after deposition show that the H/Er areal density ratio is approximately 3:1 for growth temperatures of 30, 150 and 275°C, while for growth above ∼430 °C, the ratio of hydrogen to metal is closer to 2:1. However, x-ray diffraction shows that all films have a cubic metal sublattice structure corresponding to that of ErH2. RBS and Auger electron spectroscopy confirm that sputtered erbium hydride thin films are relatively free of impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Griessen, R., Huiberts, J.N., Kremers, M., Gogh, A.T.M. van, Koeman, N.J., Dekker, J.P., and Notten, P.H.L., Journal of Alloys and Compounds, 253, 1997, 4450.10.1016/S0925-8388(96)02891-5Google Scholar
2 Huiberts, J.N., Griessen, R., Rector, J.H., Wijngaarden, R.J., Dekker, J.P., Groot, D.G. de, and Koeman, N.J., Nature, 380, 1996, 231234.10.1038/380231a0Google Scholar
3 Nagengast, D.G., Kerssemakers, J.W.J., Gogh, A.T.M. van, Dam, B., and Griessen, R., Appl. Phys. Lett., 75, 1999, 17241726.10.1063/1.124800Google Scholar
4 Sluis, P. van der, Ouwerkerk, M., and Duine, P.A., App.Phys.Lett. 70, 1997, 33563358.10.1063/1.119169Google Scholar
5 Song, G., Geitz, M., Abromeit, A. and Zabel, H., Phys.Rev.B, 54, 1996, 1409314101.10.1103/PhysRevB.54.14093Google Scholar
6 Andersson, G., Hjörvarsson, B., and Isberg, P., Phys.Rev.B, 55, 1997, 17741781.10.1103/PhysRevB.55.1774Google Scholar
7 Reimer, P.M., Zabel, H., Flynn, C.P. and Dura, J.A., Phys.Rev.B, 45, 1992, 1142611429.10.1103/PhysRevB.45.11426Google Scholar
8 Rehm, Ch., Fritzsche, H., Maletta, H. and Klose, F., Phys. Rev. B, 59, 1999, 31423152.10.1103/PhysRevB.59.3142Google Scholar
9 Khan, M.S. Rahman, Thin Solid Films, 113(#3), 1984, 207213.10.1016/0040-6090(84)90223-2Google Scholar
10 Grimshaw, J.A., Spooner, F.J., Wilson, C.G. and McQuillan, A.D., J. Mat. Sci. 16, 1981, 28552859.10.1007/BF02402850Google Scholar
11 Mueller, W.M., Blackledge, J.P. and Libowitz, G.G., Metal Hydrides, (Academic Press, New York, 1968), pages 5, 432434.Google Scholar
12 Pebler, A. and Wallace, W.E., J. Phys. Chem. 66, 1962, 148151.10.1021/j100807a033Google Scholar
13 Windischmann, H., CRC Rev. in Solid State and Mat. Sci., 17, 1992, 547596.10.1080/10408439208244586Google Scholar
14 Beavis, L.C., J. Less Common Metals, 19, 1969, 315328.10.1016/0022-5088(69)90177-5Google Scholar
15 Cubic films having {111} planes oriented parallel to the A1203 {11.0} substrate normal have been observed. Thirsk, H.R. and Whitmore, E.J., Trans. Faraday Soc., 36 (#1), 1940, 565574. or P. Kotula and C.B. Carter, J. Amer. Cer. Soc. 81, 1998, 2869–2876.10.1039/tf9403500565Google Scholar