Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T00:05:21.702Z Has data issue: false hasContentIssue false

Compensation in Be-doped Gallium Nitride Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Kyoungnae Lee
Affiliation:
[email protected], west virginia university, G-30 Hodges Hall, Physics department, morgantown, WV, 26506, United States
Brenda VanMil
Affiliation:
[email protected], west virginia university
Ming Luo
Affiliation:
[email protected], west virginia university
Thomas H Myers
Affiliation:
[email protected], west virginia university
Andrew Armstrong
Affiliation:
[email protected], Ohio State University
Steve A Ringel
Affiliation:
[email protected], Ohio State University
Mikko Rummukainen
Affiliation:
[email protected], Helsinki University of Technology
Kimmo Saarinen
Affiliation:
[email protected], Helsinki University of Technology
Get access

Abstract

It is difficult to obtain p-type conductivity in beryllium-doped gallium nitride. Even when the material exhibits p-type conductivity, it tends to be highly compensated. Beryllium-doped gallium nitride samples grown by molecular beam epitaxy were investigated using deep level optical spectroscopy (DLOS), photoluminescence (PL), and positron annihilation spectroscopy (PAS) in connection with an annealing study in an attempt to correlate compensation and PL features with microscopic defects.

Interestingly, both DAP PL and a DLOS indicate an energy level that if interpreted as an acceptor would yield an optical activation energy of beryllium in gallium nitride of about 100meV. These signatures are missing in all as-grown gallium-polar gallium nitride doped with beryllium at levels below 2×1014 cm-3. Upon annealing in pure nitrogen or forming gas, the samples clearly exhibit the DAP at 3.38 eV associated with a shallow Be acceptor, but the samples remain semi-insulating. Interestingly, all nitrogen-polar as-grown samples exhibit the DAP emission at 3.38eV. We will discuss more about the effect of annealing on the apparent optical activation of beryllium and the shift of the photoluminescence peak.

DLOS and PAS studies suggest that gallium vacancies and/or gallium-related vacancies are related to compensation in beryllium doped gallium nitride samples. For heavy beryllium doped gallium nitride, there is a correlation between PL at 2.3-2.4eV and a beryllium-related deep acceptor complex. This is supported by PAS studies and DLOS studies. Additionally, there is a correlation between donor-acceptor pair (DAP) at 3.38eV, beryllium concentration, and yellow-red photoluminescence at 2.0 or 2.2eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sun, Yuejun, Tan, Leng Seow, Chua, Soo Jin and Prakash, Savarimuthu, Mat. Res. Soc. Symp. 595, W3.82.1 (2000)Google Scholar
2. Ploog, Klaus H. and Brandt, Oliver, J. Vac. Sci. Technol. A 16, 1609 (1998)Google Scholar
3. Sugita, S., Watari, Yasumasa, Yoshizawa, Ginga, Sodesawa, Jun, Yamamizu, Hiroshi, Liu, Kuan-Ting, Su, Yan-Kuin, and Horikoshi, Yoshiji, Jpn. J. Appl. 42, 7194 (2003)CrossRefGoogle Scholar
4. Van de Walle, C. G., Limpijumnong, S., and Neugebauer, J., Phys. Rev. B 63, 245205 (2001)CrossRefGoogle Scholar
5. Reboredo, F. A. and Pantelides, S. T., Phys. Revi. Lett. 82, 1887 (1999)CrossRefGoogle Scholar
6. Northrup, J. E., Appl. Phys. Lett. 78, 2855 (2001)Google Scholar
7. Ptak, A. J., Wang, Lijun, Giles, N. C., Myers, T. H., Romano, L. T., Tian, C., Hockett, R. A., Mitha, S., and Van Lierde, P., Appl. Phys. Lett. 79, 4524 (2001)CrossRefGoogle Scholar
8. VanMil, B. L., Lee, Kyoungnae, Wang, Lijun, Giles, N. C., and Myers, T. H., Mat. Res. Soc. Symp. Proc. 798, 503 (2004)Google Scholar
9. Suski, T., Litwin-Staszewska, E., Perlin, P., Wisniewski, P., Teisseyre, H., Grzegory, I., Bockowski, M., Porowski, S., Saarinen, K., and Nissila, J., J. Crystal Growth 230, 368 (2001)CrossRefGoogle Scholar
10. Rummukainen, M., Oila, J., Laakso, A., and Saarinen, K., Ptak, A. J. and Myers, T. H., Appl. Phys. Lett. 84, 4887 (2004)CrossRefGoogle Scholar
11. Glaser, R., Carlos, W. E., Braga, G. C. B., Freitas, J. A. Jr., Moore, W. J., Shanabrook, B. V., Wickenden, A. E., Koleske, D. D., Henry, R. L., Bayerl, M. W., Brandt, M. S., Obloh, H., Kozodoy, P., DenBaars, S. P., Mishra, U. K., Nakamura, S., Haus, E., Speck, J. S., Van Nostrand, J. E., Sanchez, M. A., Calleja, E., Ptak, A. J., Myers, T. H., and Molnar, R. J., Mater. Sci. Eng. B 93, 39 (2002)Google Scholar
12. Calleja, E., Sanchez-Garcia, M. A., Calle, F., Naranjo, F. B., Munoz, E., Jahn, U., Ploog, K., Sanchez, J., Calleja, J. M., Saarinen, K., and Hautojarvi, P., Mater. Sci. Eng B 82, 2 (2001)CrossRefGoogle Scholar