Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:53:50.899Z Has data issue: false hasContentIssue false

Comparison of the adsorption properties of krypton on multi-walled carbon nanotubes and on graphite.

Published online by Cambridge University Press:  15 March 2011

Abdelhafid Bougrine
Affiliation:
Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
Karine Varlot
Affiliation:
Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
Nicole Dupont-Pavlovsky
Affiliation:
Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
Jaafar Ghanbaja
Affiliation:
Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
Denis Billaud
Affiliation:
Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
François Béuin
Affiliation:
Centre de Recherches sur la Matiére Divisée, 1B, rue de la Férollerie, 45071 Orléans cedex 2, France
Get access

Abstract

Krypton adsorption has been investigated on multi-walled carbon nanotubes prepared by catalytic decomposition of acetylene. Isotherms measured between 77.5 and 83.7K from the first stages of adsorption to the adsorbate saturation vapor pressure are compared to those obtained in the same conditions on graphite. The results are discussed in the light of the nanotube morphology, as determined by transmission electron microscopy.

Krypton adsorption proceeds, as on graphite, by successive monomolecular layer condensations on a same surface. From the morphology of the tubes, adsorption probably occurs only on their external surfaces. The first adsorbed layer is commensurate with the substrate. At its completion, it undergoes a transition into an incommensurate solid of higher density. The curvature of the graphene sheets, with respect to those of graphite, produces a stabilization of the commensurate film. The isosteric heat of adsorption Qst was measured to be 11.6 kJ/mol (ΔQst/Qst = 6%) and is lower than that of krypton on graphite.

Moreover, the monolayer condensation pressures are higher than those observed with graphite, which probably leads to an incomplete wetting of the surface by limiting the number of krypton monomolecular layers adsorbed before its bulk condensation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Arnold, Edward, Porosity in Carbons (Patrick, J.W. ed., 1995).Google Scholar
2 Thomy, A; Duval, X. Surf. Sci. 299–300, 415 (1994).Google Scholar
3 Muris, M.; Dufau, N.; Bienfait, M.; Dupont-Pavlovsky, N.; Grillet, Y.; Palmari, J.P.; Langmuir, 16, 7019 (2000).Google Scholar
4 Bougrine, A.; Dupont-Pavlovsky, N.; Naji, A.; Ghanbaja, J.; Maraîché, J.F.; Billaud, D.; Carbon, in press.Google Scholar
5 Bienfait, M.; Asmussen, B.; Johnson, M.; Zeppenfeld, P; Surface Science, 460, 243 (2000)Google Scholar
6 Muris, M.; Dupont-Pavlovsky, N.; Bienfait, M.; submitted to Chemical Physics Letters.Google Scholar
7 Bougrine, A., Dupont-Pavlovsky, N., Ghanbaja, J., Billaud, D., Beguin, F., submitted to Langmuir.Google Scholar
8 Colomer, J.F.; Piedigrosso, P.; Willelms, I.; Journet, C.; Bernier, P.; Van Tandeloo, G; Fonseca, A.; B'Nagy, J. J. Chem. Soc., Faraday Trans. 94, 3753 (1998).Google Scholar
9 Bah, A.; Ph-D Thesis, University of Nancy I, France (1994).Google Scholar
10 Takaishi, T.; Sensui, S. Trans Faraday Soc. 59, 2503 (1963).Google Scholar
11 Thomy, A.; Duval, X. J. Chim. Phys. 67, 286 (1970).Google Scholar