Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T05:10:45.608Z Has data issue: false hasContentIssue false

Comparison of Pulsed Laser and Furnace Annealing of Nitrogen Implanted Silicon

Published online by Cambridge University Press:  22 February 2011

T. P. Smith
Affiliation:
Physics Department, Brown University, Providence, RI 02912
P. J. Stiles
Affiliation:
Physics Department, Brown University, Providence, RI 02912
W. M. Augustyniak
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974
W. L. Brown
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974
D. C. Jacobson
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974
R. A. Kant
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Formation of buried insulating layers and redistribution of impurities during annealing are important processes in new semiconductor device technologies. We have studied pulsed ruby laser and furnace annealing of high dose (D>1017 N/cm2) 50 KeV nitrogen implanted silicon. Using He Back scattering and channeling, X-ray diffraction, transmission electron microscopy, and infrared transmission spectroscopy, we have compared liquid and solid phase regrowth, diffusion, impurity segregation and nitride formation. As has been previously reported, during furnace annealing at or above 1200C nitrogen redistributes and forms a polycrystalline silicon nitride (Si3N4 ) layer. [1–4] In contrast, pulsed laser annealing produces a buried amorphous silicon nitride layer filled with voids or bubbles below a layer of polycrystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dexter, R. J., Watelski, S. B., and Pioraux, S. T.Appl. Phys. Lett. 23, 455 (1973).Google Scholar
2.Tsujide, T., Nojiri, M., and Kitagawa, H., J. Appl. Phys. 51, 1605 (1980).Google Scholar
3.Bourguet, P., Dupart, J. M., Le Tiran, E., Auvray, P., Guivarch, A., Salvi, M., Pelous, G., and Henoc, P., J. Appl. Phys. 51, 6169 (1980).Google Scholar
4.Yadav, A. D., and Joshi, M. C., Thin Sol. Films, 59, 313 (1979).Google Scholar
5.Chiang, S. W., Liu, Y. S., and Reihl, R. F., Laser and Electron-Beam Solid Interactions and Materials Processing, Gibbons, J. F., Hess, L. D., and, Sigmon, T. W., Eds. (North Holland, Amsterdam, 1981), 407.Google Scholar
6.Hubler, G. K., unpublished research.Google Scholar
7.White, C. W., Wilson, S. R., Appleton, B. R., and Young, F. W. Jr., J. Appl. Phys. 51, 738 (1980).Google Scholar
8.Cullis, A. G., Webber, H. C., Poate, J. M. and Chew, N. G., J. Micros. 118, 41 (1980).Google Scholar