Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:40:16.628Z Has data issue: false hasContentIssue false

Comparison of Ni-Pt and Co-Pt Alloys Aided by Multiple-Scattering Calculations of Local Electronic Structure

Published online by Cambridge University Press:  25 February 2011

Alejandro Pisanty
Affiliation:
UNAM, Facultad de Química, Química Teórica, México DF 04510 Mexico
Miguel Angel Martinez-Carrillo
Affiliation:
UNAM, Facultad de Química, Química Teórica, México DF 04510 Mexico
Carlos Amador
Affiliation:
Case Western Reserve University, Department of Physics, Cleveland OH 44106
Get access

Abstract

The interaction between atomic and magnetic order is very strong in Ni-Pt alloys, whereas Co-Pt alloys show local magnetic properties which are independent of the composition and state of order of the system. A multiple-scattering calculation on Ni-Pt alloys is used in this paper, together with band structures for ordered compounds of both Ni-Pt and Co-Pt, to discuss the origin of the difference in properties between both alloy systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dahmani, C. E., Thesis Universitd Louis Pasteur, Strasbourg, 1985.Google Scholar
2. Parra, R. E. and Cable, J. W., Phys. Rev. B 21, 5494 (1980).Google Scholar
3. Pisanty, A., Amador, C., Ruiz, Y. and Vega, M. de la, Z. Phys. B: Condensed Matter 80, 237 (1990).Google Scholar
4. Pisanty, A., Amador, C., Ruiz, Y., Martfnez-Carrillo, M. A., de, M. M. la Vega and Christensen, N. E., in preparation.Google Scholar
5. Andersen, O. K., Phys. Rev. B 12, 3060 (1975).Google Scholar
6. Barth, U. von and Hedin, L., J. Phys. C: Solid State Phys. 5, 1629 (1972).CrossRefGoogle Scholar
7. Kootte, A., Haas, C. and Groot, R. A. de, J. Phys.: Condens. Matter 3, 1133 (1991).Google Scholar
8. Ohta, Y., Miyauchi, M. and Shimizu, M., J. Phys.: Condens. Matter 1, 2637 (1989).Google Scholar
9. Tohyama, T., Ohta, Y., Shimizu, M., J. Phys.: Condens. Matter 1, 1789 (1989).Google Scholar
10. Pinski, F. J., Ginatempo, B., Johnson, D. D., Staunton, J. B., Stocks, G. M., and Gyorffy, B. L., Phys. Rev. Lett. 66, 766 (1991).Google Scholar
11. Lu, Z. W., Wei, S. -H., and Zunger, A., Phys. Rev. Lett. 66, 1753 (1991).CrossRefGoogle Scholar
12. Williams, A. R., Zeller, R., Moruzzi, V. L., Gelatt, C. D. and Kubler, J., J. Appl. Phys. 52, 2067 (1981) and references cited therein.Google Scholar
13. Pisanty, A., Amador, C. and Martinez-Carrillo, M. A., in Density Functional Approaches to Chemistry, Labanowski, J. K. and Andzelm, J. W. (eds.), Springer-Verlag, 1991, p. 401.Google Scholar
14. Dahmani, C. E., Cadevifle, M. C., Sanchez, J. M., and Morän-Löpez, J. L., Phys. Rev. Lett. 55, 1208 (1985).Google Scholar
15. The model of Ref. [14] has been used assigning the effective parameters from the calculated magnetization energies (the difference between the non-magnetic and the ferromagnetic state). The phase diagram thus calculated gives Curie temperatures in very good agreement with the experimental values. Amador, C., Lambrecht, W. R. L., and Segall, B. (to be published).Google Scholar
16. Lloyd, P. and Smith, P. V., Adv. in Phys. 21, 69 (1972).Google Scholar