Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:21:32.877Z Has data issue: false hasContentIssue false

Comparative Study on Lateral Silicide Growth in Self-Aligned Ti and Co Silicidation: Interaction and Reactivity with SiO2 and Si3N4

Published online by Cambridge University Press:  10 February 2011

Ji-Soo Park
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Dong Kyun Sohn
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Jong-Uk Bae
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Yun-Jun Huh
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Jin Won Park
Affiliation:
R&D Division, LG Semicon Co. Ltd., I Hyangjeong-dong, Cheong-si 361–480, Korea
Get access

Abstract

The interaction and reactivity of Ti and Co with SiO2 and Si3N4 have been investigated. In the case of Ti salicide, SiO2 sidewall spacer showed no lateral silicide overgrowth and low leakage current between gate and source/drain up to silicidation temperature of 750 1C. However, Si3N4 sidewall spacer showed dopant dependence of the lateral silicide growth and leakage current. This discrepancy between SiO2 and Si3N4 and dopant dependence is closely related to the reactivity. For Co, lateral silicide overgrowth is greatly reduced. Instead, Co films on SiO2 and Si3N4 layer were agglomerated by annealing. An annealing at 1050°C caused not only agglomeration of Co film but penetration of Co agglomerates through the layers. Interestingly, the CoSi2 spike of B type epitaxial and twinned orientation was formed in the Si substrate by the penetrated Co source.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ting, C. Y., yer, S. S. I, Osburn, C. M., Hu, G. J., and Schweighart, A. M., VLSI Science and Technology, Electrochemical Society, Pennington, NJ, 1982, pp. 213.Google Scholar
[2] Lau, C. K., See, Y. C., Scott, D. B., Bridges, J. M., Perna, S. M., and Savis, R. D., Tech. Dig. Int. Electron Devices Meet. 1982, p. 714.Google Scholar
[3] Wang, Q. F., Lauwers, A., Jonckx, F., Potter, de, Chen, Chun-Cho, and Maex, K., Mat. Res. Soc. Symp. Proc. 402, p.221 (1996).10.1557/PROC-402-221Google Scholar
[4] Murarka, S. P., and Fraser, D. B., J. Appl. Phys. 21, p. 342 (1980).10.1063/1.327378Google Scholar
[5] Boom, R., De Boer, R. F., and Miedema, A. R., J. Less-Common Met. 45, p. 237 (1976).10.1016/0022-5088(76)90270-8Google Scholar
[6] Boom, R., De Boer, R. F., and Miedema, A. R., J. Less-Common Met. 46, p. 271 (1976).10.1016/0022-5088(76)90215-0Google Scholar
[7] Beyers, R., Coulman, D., and Merchant, P., J. Appl. Phys. 61, p.5110 (1987).10.1063/1.338337Google Scholar
[8] Maex, K., Ghosh, G., Delaey, L., Probst, V., Lippens, P., Van den hove, L., and De Keermaecker, R. F., J. Mater. Res. 4, p. 1209 (1989).10.1557/JMR.1989.1209Google Scholar
[9] Maex, K., DeKeersmaecker, R. F., Ghosh, G., Delaey, L., and Probst, V., J. Appl. Phys. 66, p.5327 (1989).10.1063/1.343724Google Scholar
[10] Park, H. K., Sachitano, J., McPherson, M., Yamaguchi, T., and Lehman, G., J. Vac. Sci. Technol. A2, p.264 (1984).10.1116/1.572576Google Scholar
[11] Kitano, T., Kodama, N., Sakai, T., and Saito, S., Jpn. J. Appl. Phys. 35, p.591 (1996).10.1143/JJAP.35.591Google Scholar
[12] Weast, R. C., Handbook of Chemistry and Physics, CRC Press, 1985.Google Scholar
[13] Smith, G. C., and Bonifield, T. D., Proc. IEEE VLSI Multilevel Interconnect Conf. 1987, p.155.Google Scholar
[14] Ting, W., Petti, C., Radigan, S., Ramkumar, K., and Trammel, P., IEEE Trans. Electron Device Lett EDL–15, p.283 (1994).10.1109/55.296217Google Scholar
[15] Barin, I., Thermodynamic Data of Pure Substances, VCH, Weinheim, Germany, 1989.Google Scholar
[16] Jones, R. E., Li, B. Z., Daneshuar, K., and Davis, J., J. Appl. Phys. 56, p. 3465 (1984).10.1063/1.333896Google Scholar
[17] Maeda, T., Nakamura, T., Shima, S., and Matsunga, J. IEEE Trans. Electron Devices, ED–34, p.599 (1987).10.1109/T-ED.1987.22969Google Scholar
[18] Tamura, M., and Sunami, H., Jpn. J. Appl. Phys. 11, p. 1097 (1971).10.1143/JJAP.11.1097Google Scholar
[19] Wolf, S., Silicon Processing for the VLSI era, Lattice Press, CA, 1990, vol. 2, p. 22.Google Scholar
[20]. Bogh, A., and Gaind, A. K., Appl. Phys. Lett. 33, p. 895 (1978).Google Scholar
[21] Jaccodine, R. J., and Schlegel, W. A., J. Appl. Phys. 37, p.2429 (1966).10.1063/1.1708831Google Scholar
[22] Gambino, J. P., and Cunningham, B., J. Electrochem. Soc. 140, p. 2654 (1993).10.1149/1.2220880Google Scholar
[23] Tung, R. T., Poate, J. M., Bean, J. C., Gibson, J. M., and Jacobson, D. C., Thin Solid Films 93, p.77 (1982).10.1016/0040-6090(82)90093-1Google Scholar
[24] Tung, R. T., Batstone, J. L., and Yalisove, S. M., J. Electrochem. Soc. 136, p. 815 (1989).10.1149/1.2096749Google Scholar