Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T07:49:41.204Z Has data issue: false hasContentIssue false

Comparative Study of Thin PZT Sol-gel Films Deposited on Pt and GaN Substrates

Published online by Cambridge University Press:  01 February 2011

Serguei A. Chevtchenko
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main Street, Richmond, VA, 23284-3072, United States, +1-804-8277000 Ext. 451
Francisco A. Agra
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main Street, Richmond, VA, 23284-3072, United States
Jinqiao Xie
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering, 601 West Main Street, Richmond, VA, 23284-3072, United States
Hadis Morkoç
Affiliation:
[email protected], Virginia Commonwealth University, Electrical Engineering and Physics, 601 West Main Street, Richmond, VA, 23284-3072, United States
Get access

Abstract

We provide a comparative study of the piezoresponse in thin Pb(ZrxTi1−x)O3 (PZT) films deposited onto GaN/sapphire and Pt/Ti/SiO2/Si substrates using the sol-gel process. The effective piezoelectric coefficient was measured by Piezoresponse Force Microscopy. The resulting effective piezoelectric coefficient obtained for PZT(∼180 nm)/GaN/sapphire structure is 16.7 ± 3.4 pm/V and for PZT(∼180 nm)/Pt/Ti/SiO2/Si structure is 7.8 ± 0.8 pm/V. We also discuss the substrate clamping effect of both structures and explain the relatively stronger piezoresponse of PZT on GaN by different orientation of films formed on the two types of substrates. In this investigation, the PZT thin films crystallized with preferred (100) and (110) orientations on platinum and GaN, respectively. The phase mode of the Piezoresponse Force Microscopy was used to demonstrate remanent polarization in PZT/GaN/sapphire structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scott, J.F., Araujo, C.A. Paz de, Science 246, 1400 (1989)Google Scholar
2 Miller, S.L. and McWhorter, P.J., J. Appl. Phys. 72, 5999 (1992)Google Scholar
3 Xu, Y., Chen, C.J., Xu, R., and Mackenzie, J.D., Phys. Rev. B 44, 35 (1991)Google Scholar
4 Rost, T.A., Lin, H., and Rabson, T.A., Appl. Phys. Lett. 59, 3654 (1991)Google Scholar
5 Alexe, M., Appl. Phys. Lett. 72, 2283 (1998)Google Scholar
6 Alexe, M., Kastner, G., Hesse, D., and Gosele, U., Appl. Phys. Lett. 70, 3416 (1997)Google Scholar
7 Wang, F., Fuflyigin, V., and Osinsky, A., J. Appl. Phys. 88, 1701 (2000)Google Scholar
8 Cao, W., Dey, S.K., J. Sol-Gel Sci. Techn. 42, 389 (2007)Google Scholar
9 Li, W.P., Zhang, R., Zhou, Y.G., Yin, J., Bu, H.M., Luo, Z.Y., Shen, B., Shi, Y., Jiang, R.L., Gu, S.L., Liu, Z.G., and Zheng, Y.D., Huang, Z.C., Appl. Phys. Lett. 75, 2416 (1999)Google Scholar
10 Torah, R.N., Beeby, S.P., and White, N.M., J. Phys. D: Appl. Phys. 37, 1074 (2004)Google Scholar
11 Lian, L., and Sottos, N.R., J. Appl. Phys. 87, 3941 (2000)Google Scholar
12 Berfield, T.A., Ong, R.J., Payne, D.A., and Sottos, N.R., J. Appl. Phys. 101, 024102 (2007)Google Scholar
13 Lian, L., and Sottos, N.R., J. Appl. Phys. 87, 3941 (2000)Google Scholar
14 Scrymgeour, D.A., Sounart, T.L., Simmons, N.C., and Hsu, J.W.P., J. Appl. Phys. 101, 014316 (2007)Google Scholar
15 Yan, L., Li, J., Cao, H., and Viehland, D., Appl. Phys. Lett. 89, 262905 (2006)Google Scholar
16 Cao, W., Bhaskar, S., Li, J., Dey, S.K., Thin Solid Films, 484, 154 (2005)Google Scholar