Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T03:28:52.607Z Has data issue: false hasContentIssue false

Comparative investigation of quantum-dot-like localization centers in InGaN quantum well and quantum dot structures

Published online by Cambridge University Press:  01 February 2011

Kathrin Sebald
Affiliation:
[email protected], Institute of Solid State Physics, P.O. Box 330440, Bremen, Bremen, 28334, Germany
Henning Lohmeyer
Affiliation:
Jürgen Gutowski
Affiliation:
Tomohiro Yamaguchi
Affiliation:
Detlef Hommel
Affiliation:
Get access

Abstract

We present comparative micro-photoluminescence measurements on InGaN/GaN quantum well and quantum dot samples. Single sharp emission lines were investigated for both kinds of samples as a function of temperature and excitation density. For the sharp emission lines of the quantum dots and the strong localization centers in the quantum well samples comparable experimental findings were obtained such as the independence of their spectral position of the excitation density and the observation of binding and antibinding multiexcitonic states giving clear evidence for the quantum dot nature of localization centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krestnikov, I. L., Ledentsov, N. N., Hoffmann, A., Bimberg, D., Sakharov, A. V., Lundin, W. V., Tsatsul'nikov, A. F., Usikov, A. S., Alferov, Zh. I., Musikhin, Yu. G. and Gerthsen, D., Phys. Rev. B 66, 155310 (2002).CrossRefGoogle Scholar
2. Gerthsen, D., Neubauer, B., Rosenauer, A., Stephan, T., Kalt, H., Schön, O. and Heuken, M., Appl. Phys. Lett. 79, 2552 (2001).CrossRefGoogle Scholar
3. Chichibu, S., Sota, T., Wada, K. and Nakamura, S., J. Vac. Sci. Technol. B 16, 2204 (1998).CrossRefGoogle Scholar
4. Schömig, H., Halm, S., Forchel, A., Bacher, G., Off, J., and Scholz, F., Phys. Rev. Lett. 92, 106802 (2004).CrossRefGoogle Scholar
5. Tachibana, K., Someya, T., Arakawa, Y., Werner, R. and Forchel, A., Appl. Phys. Lett. 75, 2605 (1999).CrossRefGoogle Scholar
6. Moriwaki, O., Someya, T., Tachibana, T., Ishida, S. and Arakawa, Y., Appl. Phys. Lett. 76, 2361 (2000).CrossRefGoogle Scholar
7. Oliver, R. A., Briggs, G. A. D., Kappers, M. J., Humphreys, C. J., Rice, J. H., Smith, J. D. and Taylor, R. A., Appl. Phys. Lett. 83, 755 (2003).CrossRefGoogle Scholar
8. Seguin, R., Rodt, S., Strittmatter, A., Reiβmann, L., Bartel, T., Hoffmann, A., Bimberg, D., Hahn, E. and Gerthsen, D., Appl. Phys. Lett. 84, 4023 (2004).CrossRefGoogle Scholar
9. Bötcher, T., Zellweger, Ch., Figge, S., Kröger, R., Petter, Ch., Bühlmann, H.-J., Ilegems, M., Ryder, P. L. and Hommel, D. phys. stat. sol. (a) 191, R3 (2002).3.0.CO;2-#>CrossRef3.0.CO;2-#>Google Scholar
10. Caruge, J.-Michel, Chan, Y., Sundar, V., Eisler, H. J., and Bawendi, M. G., Phys. Rev. B 70, 085316 (2004).CrossRefGoogle Scholar
11. Rodt, S., Heitz, R., Schliwa, A., Sellin, R. L., Guffarth, F. and Bimberg, D., Phys. Rev. B. 68, 035331 (2003).CrossRefGoogle Scholar
12. Besombes, L., Kheng, K., Marsal, L., and Mariette, H., Phys. Rev. B 63, 155307 (2001).CrossRefGoogle Scholar
13. Sebald, K., Michler, P., Passow, T., Hommel, D., Bacher, G., and Forchel, A., Appl. Phys. Lett. 81, 2920 (2002).CrossRefGoogle Scholar