Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T04:18:03.998Z Has data issue: false hasContentIssue false

Common Themes in ther Epitaxial Growth of Oxides on Semiconductors

Published online by Cambridge University Press:  15 February 2011

E. J. Tarsa
Affiliation:
University of California, Santa Barbara, Materials Department, Santa Barbara, CA 93106
K. L. Mccormick
Affiliation:
University of California, Santa Barbara, Materials Department, Santa Barbara, CA 93106
J. S. Speck
Affiliation:
University of California, Santa Barbara, Materials Department, Santa Barbara, CA 93106
Get access

Abstract

A review of the growth of oriented oxides on Si and Ill-V semiconductors provides insight into some of the common themes of oxide/semiconductor epitaxy. The nature and success of the epitaxy can be attributed to four primary factors: (i) semiconductor surface preparation; (ii) oxide/semiconductor reaction thermodynamics; (iii) surface and interfacial polarity; and (iv) structural matching (lattice matching, thermal expansion, and symmetry). Semiconductor surface preparation governs the initial stages of epitaxy for systems such as MgO/GaAs and In2O3/InAs. In these cases, the epitaxial development depends on the presence or absence of a native oxide layer prior to growth. Chemical reaction can also influence the epitaxial process, as is illustrated in the growth of gadolinium oxide on Si. In general, the initial stages of epitaxy reflect a thermodynamic competition between the formation of the desired oxide phase, oxidation of the semiconductor, and formation of intermediate phases such as silicides and silicates. An analysis of possible reactions is presented for selected binary and ternary oxides with Si and GaAs. Surface and interfacial energy can also play an important role in determining the morphology and orientation of oxides having polar low-index faces, as illustrated in the growth of fluorite and related bixbyite oxides such as CeO2, In2O3 and Y2O3. The epitaxial relationships between the oxide and semiconductor may be rationalized in terms of either direct lattice matching or higher order epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ishida, M., Tsuji, S., Kimura, K., Matsunami, H., and Tanaka, T., J. Cryst. Growth 45, 393 (1978).Google Scholar
[2] Ihara, M., Arimoto, Y., Jifuku, M., Yamaoka, T., and Kurokawa, K., ISSCC Digest of Tech. Papers, p. 210 (1981).Google Scholar
[3] Ihara, M., Arimoto, Y., Jifuku, M., Kimura, T., Kodama, S., Yamawaki, H., and Yamaoka, T., J. Electrochem. Soc. 129, 2569 (1982).CrossRefGoogle Scholar
[4] Matsubara, S., Shohata, N., and Mikami, M., Proc. of the 5th Meeting on Ferroelectric Materials and Their Applications, Kyoto 1985, Japn. J. Appl. Phys. 24 (supplement) 10 (1985).CrossRefGoogle Scholar
[5] Bednorz, J. G and Miiller, K.A., Z. Phys. B64, 189 (1986).Google Scholar
[6] Bednorz, J.G., Takashige, M., and MUller, K.A., Europhys. Lett. 3, 379 (1987).Google Scholar
[7] Ishida, M., Katakabe, I., Nakamura, T., and Ohtake, N., Appl. Phys. Lett. 52, 1326 (1988).CrossRefGoogle Scholar
[8] Ishida, M., Katakabe, I., Ohtake, N., and Nakamura, T., Mat. Res. Soc. Symp. Proc. 116, 375 (1988).CrossRefGoogle Scholar
[9] Sawada, K., Ishida, M., Ohtake, N., and Nakamura, T., Appl. Phys. Lett. 52, 1672 (1988).Google Scholar
[10] Sawada, K., Ishida, M., Suzaki, T., and Nakamura, T., J. Cryst. Growth (Special Issue of MBE-V) 95, 494 (1989).CrossRefGoogle Scholar
[11] Ishida, M., Sawada, K., Yamaguchi, S., Nakamura, T., and Suzaki, T., Appl. Phys. Lett. 55, 556 (1989).Google Scholar
[12] Ishida, M., Yamaguchi, S., Masa, Y., Nakamura, T., and Hikita, Y., J. Appl. Phys. 69, 8408 (1991).Google Scholar
[13] McKee, R., Walker, F., Conner, J., Specht, E., and Zelmon, D., Appl. Phys. Lett. 59, 782 (1991).Google Scholar
[14] Ihara, M., Microelectronic Engineering 1, 161 (1983).Google Scholar
[15] Matsubara, S., Miyasaka, Y., and Shohata, N., Mater. Res. Soc. Sym. Abstract., Boston, 378 (1987).Google Scholar
[16] Miura, S., Yoshitake, T., Matsubara, S., Miyasaka, Y., Shohata, N., and Satoh, T., Appl. Phys. Lett. 53, 1968 (1988).Google Scholar
[17] Wu, X., Inam, A., Hedge, M., Wilkens, B., Chang, C., Hwang, D., Nazar, L., Miura, S., Matsubara, S., Miyasaka, Y., and Shohata, N., Appl. Phys. Lett. 54, 754 (1989).Google Scholar
[18] Arimoto, Y., Kimura, T., and Ihara, M., J. Electrochem. Soc. 139 2934 (1992).Google Scholar
[19] Egami, K., Mikami, M., Tsuya, H., Appl. Phys. Lett. 43, 757 (1983).Google Scholar
[20] Fork, D., Ponce, F., Tramontana, J., and Geballe, T., Appl. Phys. Lett. 58, 2294 (1991).CrossRefGoogle Scholar
[21] Li, Y., Xiong, G., Lian, G., Le, J., and Gan, Z., Thin Solid Films 223, 11 (1993).Google Scholar
[22] Amirhaghi, S., Archer, A., Taguiang, B., McMinn, R., Barnes, P., Tarling, S. and Boyd, I., Appl. Surf. Sci. 54, 205 (1992).Google Scholar
[23] Kado, Y., and Arita, Y., J. Appl. Phys. 61, 2398 (1987).CrossRefGoogle Scholar
[24] Mori, H. and Ishiwara, H., Japn. J. Appl. Phys. 30, L1415 (1991).Google Scholar
[25] Fukumoto, H., Yamamoto, M., Osaka, Y., and Nishiyama, F., J. Appl. Phys. 67, 2447 (1989).CrossRefGoogle Scholar
[26] Yamamoto, M., Fukumoto, H., and Osaka, Y., Mat. Res. Soc. Symp. Proc. 221, 35 (1991).Google Scholar
[27] Fork, D., Fenner, D., Barton, R., Philips, J., Connell, G., Boyce, J., Geballe, T., Appl. Phys. Lett. 57, 1161 (1990).CrossRefGoogle Scholar
[28] Fork, D., Fenner, D., Connell, G., Philips, J., Geballe, T., Appl. Phys. Lett. 57, 1137 (1990).CrossRefGoogle Scholar
[29] Tiwari, P., Kanetkar, S., Sharan, S., and Narayan, J., Appl. Phys. Lett. 57, 1578 (1990).Google Scholar
[30] Ogale, S., Vispute, R., and Rao, R., Appl. Phys. Lett. 57, 1805 (1990).CrossRefGoogle Scholar
[31] Fork, D., Barrera, A., Geballe, T., Viano, A., and Fenner, D., Appl. Phys. Lett. 57, 2504 (1990).Google Scholar
[32] Fork, D., Ponce, F., Tramontana, J., Newman, N., Philips, J., and Geballe, T., Appl. Phys. Lett. 58, 2432 (1991).Google Scholar
[33] Ajimine, E., Pagaduan, F., Rahman, M., Yang, C., Inokawa, H., Fork, D. and Geballe, T., Appl. Phys. Lett. 59, 2889 (1991).Google Scholar
[34] Harada, K., Nakanishi, H., Itozaki, H., and Yazu, S., Japn. J. Appl. Phys. 30, 934 (1991).CrossRefGoogle Scholar
[35] Fenner, D., Viano, A., Fork, D., Connell, G., Boyce, J., Ponce, F., and Tramontana, J., J. Appl. Phys. 69, 2176 (1991).Google Scholar
[36] Tiwari, P., Zheleva, T., and Narayan, J., Appl. Phys. Lett. 63, 30 (1993).Google Scholar
[37] Bardal, A., Eibl, O., Matthée, Th., Friedl, G., and Wecker, J., J. Mater. Res. 8, 2112 (1993).CrossRefGoogle Scholar
[38] Morita, M., Fukumoto, H., Imura, T., Osaka, Y., and Ichihara, M., J. Appl. Phys. 58, 2407 (1985).Google Scholar
[39] Osaka, Y., Imura, T., Nishibayashi, Y., and Nishiyama, F., J. Appl. Phys. 63, 581 (1988).Google Scholar
[40] Nishibayashi, Y., Imura, T., Osaka, Y., and Fukumoto, H., Mat. Res. Soc. Symp. Proc. 116, 363 (1988).Google Scholar
[41] Tarsa, E., Robinson, M., and Speck, J., unpublished.Google Scholar
[42] Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S. and Ueda, Y., Appl. Phys. Lett. 56, 1332 (1990).Google Scholar
[43] Yoshimoto, M., Nagata, H., Tsukahara, T., Koinuma, H., Jap. J. Appl. Phys. 29, L11999 (1990).Google Scholar
[44] Nagata, H., Yoshimoto, M., Tsukahara, T., Gonda, S., and Koinuma, H., Mat. Res. Soc. Symp. Proc. 202, 445 (1991).Google Scholar
[45] Inoue, T., Ohsuna, T., Luo, L., Wu, X., Maggiore, C., Yamamoto, Y., Sakurai, Y., and Chang, J., Appl. Phys. Lett. 59, 3604 (1991), and T. Inoue, T. Ohsuna, Y. Obara, Y. Yamamoto, M. Satoh and Y. Sakurai, Jpn. J. Appl. Phys. 32, 1765 (1993).Google Scholar
[46] Inoue, T., Osonoe, M., Tohda, H., Hiramatsu, M., Yamamoto, Y. Yamanaka, A., and Nakayama, T., J. Appl. Phys. 69, 8313 (1991).Google Scholar
[47] Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., and Koinuma, H., Jap. J. Appl. Phys. 30, L1136 (1991).Google Scholar
[48] Luo, L., Wu, X., Dye, R., Muenchausen, R., Foltyn, S., Coulter, Y., Maggiore, C., and Inoue, T., Appl. Phys. Lett. 59, 2043 (1991).Google Scholar
[49] Inoue, T., Ohsuna, T., Yamada, Y., Wakamatsu, K., Itoh, Y., Nozawa, T., Sasaki, E., Yamamoto, Y., and Sakurai, Y., Jpn. J. Appl. Phys. 31, L1736 (1992).Google Scholar
[50] Fukumoto, H., Imura, T., Osaka, Y., Appl. Phys. Lett. 55, 360 (1989).Google Scholar
[51] Harada, K., Nakanishi, H., Itozaki, H., and Yazu, S., Jpn. J. Appl. Phys. 30, 934 (1991).Google Scholar
[52] Matthée, Th., Wecker, J., Behner, H., Friedl, G., Eibl, O., and Samwer, K., Appl. Phys. Lett. 61, 1240 (1992).CrossRefGoogle Scholar
[53] Nagata, H., Yoshimoto, M., Tsukahara, T., Gonda, S., and Koinuma, H., Mat. Res. Soc. Symp. Proc. 202, 445 (1991).Google Scholar
[54] Fork, D., Fenner, D., and Geballe, T., J. Appl. Phys. 68, 4316 (1990).CrossRefGoogle Scholar
[55] Kado, Y. and Arita, Y., Extended Abstracts of the 20th Conference on Solid State Devices and Materials, Tokyo, 1989, pp. 181184.Google Scholar
[56] Kado, Y. and Arita, Y., Extended Abstracts of the 21st Conference on Solid State Devices and Materials, Tokyo, 1989, pp. 4548.Google Scholar
[57] Tarsa, E., Speck, J. and Robinson, McD., Appl. Phys. Lett. 63, 539 (1993).Google Scholar
[58] Fork, D., Nashimoto, K., and Geballe, T., Appl. Phys. Lett. 60, 1621 (1992).Google Scholar
[59] Nashimoto, K., Fork, D., and Geballe, T., Appl. Phys. Lett. 60, 1199 (1992).Google Scholar
[60] Chang, L., Tseng, M., Hu, E., Fork, D., Appl. Phys. Lett. 60, 1753 (1992).Google Scholar
[61] Hung, L. S., Zheng, L. R., and Blanton, T. N., Appl. Phys. Lett. 60, 3129 (1992).Google Scholar
[62] Tseng, M. Z., Nguyen, C., Tarsa, E., Chang, L. D., Hu, E. L., and Kroemer, H., Appl. Phys. Lett. 61, 601 (1992).Google Scholar
[63] Tonouchi, M., Sakaguchi, Y., Kobayashi, T., J. Appl. Phys. 62, 961 (1987).Google Scholar
[64] Hsu, W. and Raj, R., Appl. Phys. Lett., 60, 3105 (1992).Google Scholar
[65] Tarsa, E.J., De Graef, M., Clarke, D.R., Gossard, A.C., and Speck, J.S., J. Appl. Phys. 73, 3276 (1993).Google Scholar
[66] Sands, T., Washburn, J., and Gronsky, R., Mat. Lett. 3, 247 (1985).Google Scholar
[67] Fork, D. and Anderson, G., Mat. Res. Soc. Symp. Proc. 285, 355 (1993).Google Scholar
[68] Tarsa, E., English, J. and Speck, J., Appl. Phys. Lett. 62, 2332 (1993).Google Scholar
[69] Cowans, B., Dardas, Z., Belgass, W., Carpenter, M., and Melloch, M., Appl. Phys. Lett. 54, 365 (1989).Google Scholar
[70] Kerr, T., Peacock, D. and Wood, C., J. Appl. Phys. 63, 1494 (1988).Google Scholar
[71] Miller, D., Chen, R., Elliott, K. and Kowalczyk, S., J. Appl. Phys. 57, 1922 (1985).Google Scholar
[72] Tarsa, E., Forth, K., Speck, J., unpublished.Google Scholar
[73] Fork, D., Kingston, J., Anderson, G., Tarsa, E., and Speck, J., Mat. Res. Soc. Symp. Proc. (1993).Google Scholar
[74] Givargizov, E., Sheftal, N. and Klykov, V., Current Topics in Materials Science, v. 10 ed. by. Kaldis, E. (North Holland, 1982).Google Scholar
[75] Nagata, H., Thin Solid Films 224, 1 (1993).Google Scholar
[76] Summerfelt, S., Mat. Res. Soc. Symp. Proc. 221, 29 (1991).Google Scholar
[77] McCormic, K., Tarsa, E., and Speck, J., unpublished.Google Scholar
[78] Schowalter, L., Fathauer, R., Goehner, R., DeBlois, R., Hashimoto, S., Peng, J., Gibson, M., and Krusius, J., J. Appl. Phys. 58, 302 (1985).Google Scholar
[79] Fathauer, R. and Schowalter, L., Appl. Phys. Lett. 45, 519 (1984).Google Scholar
[80] Harrison, W., Kraut, E., Waldrop, J., and Grant, R., Phys. Rev. B 18, 4402 (1978).Google Scholar
[81] Freund, L., MRS Bulletin, July, 1992, p. 52.Google Scholar
[82] Sinharoy, S., Buhay, H., Lampe, D., and Francombe, M., J. Vac. Sci. Technol. A 10, 1554 (1992).Google Scholar
[83] Geideman, W., Wu, S., Sanchez, L., Maderic, B., Liu, W., Naik, I. and Watanabe, S., IEEE 7th International Symposium on Applications of Ferroelectrics, p. 258 (1990).Google Scholar
[84] Sreenivas, K. and Sayer, M., J. Appl. Phys. 64, 1484 (1988).Google Scholar
[85] Takayama, R., Tomita, Y., lijima, K., and Ueda, I., J. Appl. Phys. 61, 411 (1987).Google Scholar
[86] Takeuchi, H. and Kushida, K., IEEE 7th International Symposium on Applications of Ferroelectrics, 1990, p. 115.Google Scholar
[87] Holman, R. L., Johnson, L. M. Althouse, Skinner, D. P., Proc. of the Sixth IEEE Inernational. Symp. on Applications of Ferroelectrics(IEEE, New York, 1986) p. 32.Google Scholar
[88] Glass, A., MRS Bulletin, August, 1988, p. 16.Google Scholar
[89] Fork, D., and Anderson, G., Mat. Res. Soc. Symp. Proc. 285, 355 (1993).Google Scholar
[90] Hung, L., Agostinelli, J., Mir, J., and Zheng, L., Appl. Phys. Lett. 62, 3071 (1993).Google Scholar
[91] Alferness, R., IEEE International Symp. on the Applications of Ferroelectrics, 1986, p. 1.Google Scholar
[92] Ramesh, R., Chan, W., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J., Keramidas, V., Fork, D., Lee, J., and Safari, A., Appl. Phys. Lett., 61, 1537 (1992).Google Scholar
[93] Eom, C., Van Dover, R., Philips, J., Werder, D., Marshall, J., Chen, C., Cava, R., Fleming, R., and Fork, D., Appl. Phys. Lett. 63, 2750 (1993).Google Scholar
[94] Bernstein, S., Wong, T., Kisler, Y., and Tustison, R., J. Mater. Res. 8, 12 (1993).Google Scholar
[95] Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V., Haakenaasen, R., and Fork, D., Appl. Phys. Lett. 63, 3592 (1993).Google Scholar
[96] Reitze, D., Haton, E., Ramesh, R., Etemad, S., Leaird, D., Sands, T., Karim, Z., and Tanguay, A., Appl. Phys. Lett. 63, 596 (1993).Google Scholar