Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T07:46:05.439Z Has data issue: false hasContentIssue false

Commensuration and Discommensuration in the Ag-Mg Alloys

Published online by Cambridge University Press:  25 February 2011

Y. Fujino
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 4V7907
H. Sato
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 4V7907
N. Otsuka
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 4V7907
Get access

Abstract

Commensuration and discommensuration characteristics of the long period superlattice in the Ag-Mg alloys near Ag3Mg with short modulation periods (M ≃ 2) are investigated. When quenched from 650°C, the modulation periods M of these alloys is found to take theoretical values determined by the size of the Fermi surface, while upon further annealing at low temperatures, alloys assume the commensurate structure M=2, except for those alloys with theoretical M values substantially different from 2. These alloys approach the periodic discommensuration structures of the type <2j1> or its variants whose average periods M are closest to the theoretical incommensurate values. This behavior leads to the conclusion that the formation of the long period superlattice in these alloys is basically due to the CDW formation and that the commensuration and the discommensuration characteristics are determined by the free energy of the modulation boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sato, H. and Toth, R.S., Phys. Rev. 124 1833 (1961), 127 469 (1962).Google Scholar
2. Sato, H. and Toth, R.S., Phys. Rev. Lett. 8 239 (1962).Google Scholar
3. Sato, H. and Toth, R.S., in “Alloying Behavior in Concentrated Solid Solutions,” Edited by Massalski, T.B., Grodon and Breach Science Publishers, Inc. N.Y. (1965) pp 295419.Google Scholar
4. Sato, H. and Toth, R.S., Bull. Soc. Franc., Miner. Cryst. 91, 557 (1968).Google Scholar
5. Hirabayashi, M., Yamaguchi, S., Hiraga, K., Ino, N., Sato, H. and Toth, R.S., Proc. Third Bolton Landing Conference on Ordered Alloys: Structural Applications and Physical Metallurgy 1969, Claitor's Publishing Div., Baton Rouge (1970) pp. 137–148.Google Scholar
6. Sato, AIP Conference Proceedings No. 53 (Modulated Structures) (1979) pp. 165–167.Google Scholar
7. Tachiki, M. and Teramoto, K., J. Phys. Chem. Solids 27 335 (1966).CrossRefGoogle Scholar
8. McMillan, W.L, Phys. Rev. B12 1187 (1975), B14 1496 (1976).Google Scholar
9. Fung, K.K., McKernan, S., Steeds, J.W. and Wilson, J.A., J. Phys. C14 5417 (1981).Google Scholar
10. (C.H. (Chen, Gibson, J.M. and Flemming, H.M., Phys. Rev. B26 184 (1982).Google Scholar
11. Onozuka, T. Otsuka, N. and Sato, H., the following paper.Google Scholar
12. Guymont, M. and Gratias, D., Acta Cryst. A35 181 (1979).Google Scholar
13. Fujiwara, K., Phys, J., Soc. Japan 12 7 (1957).Google Scholar
14. Schubert, K., Zs. f. Metallkde 53 605 (1962).Google Scholar
15. Clarebrough, G.M. and Nicholas, J.F., Australian Journal of Scientific Research 39 284 (1950).Google Scholar
16. Fujiwara, K., Hirabayashi, M., Watanabe, D. and Ogawa, S., Phys, J., Soc. Japan 13 167 (1958).Google Scholar
17. Gangulee, A. and Bever, M.B., Trans. AIME 242 278 (1968).Google Scholar
18. Gangulee, A. and Moss, S.C., J. Appl. Cryst 1 61 (1968).Google Scholar
19. Hanhi, K., Maki, J. and Paalassalo, P., Acta Met. 19, 15 (1971).CrossRefGoogle Scholar
20. Portier, R., Gratias, D., Guymont, M. and Stobbs, W.M., Acta Cryst. A36 190 (1980).CrossRefGoogle Scholar
21. Kuwano, K., Sasaki, S., Tomokiyo, Y. and Eguchi, T., Electron Microscopy, 2, 87 (1982).Google Scholar
22. Eguchi, T., Tomokiyo, Y., Kuwano, N. and Sasaki, S., Proc. 7th Int. Conf. URVEM, Berkeley (1983) p. 67.Google Scholar
23. Mihama, K., J. Phys. Soc. Japan 31 1677 (1971).Google Scholar
24. Watanabe, D. and Takashima, K., J. Appl. Cryst. 8, 598 (1975).Google Scholar
25. Guymont, M., Portier, R. and Gratias, D., Acta Cryst A36 792 (1980).Google Scholar
26. Iwasaki, H., Hirabayashi, M., Fujiwara, K., Watanabe, D. and Ogawa, S. J. Phys. Soc. Japan 15, 1771 (1960).CrossRefGoogle Scholar
27. van Tendeloo, G. and Amelinckx, S., Phys. Stat. Sal. (a) 43 553 (1977).CrossRefGoogle Scholar
28. de Fontaine, D. and Kulik, J., Acta Met 33Google Scholar
29. von Boem, J. and Bak, P., Phys, Rev. Letters 42 122 (1979).Google Scholar
30. Fisher, M.E. and Selke, W., Phys. Rev. Letters 44, 1502 (1980).Google Scholar
31. Friedel, J., Advan Phys. 3, 446 (1954).Google Scholar
32. Adachi, K., private comunication; presented at the meeting of the Physical Society of Japan, April, 1961.Google Scholar
33. Villain, J., J. de physique et Radium 23 861 (1962).Google Scholar
34. Pick, R., J. de physique 24 123 (1963).Google Scholar
35. Pick, R., J. de Physique 24 233 (1963).Google Scholar