Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T02:00:08.866Z Has data issue: false hasContentIssue false

Combined Optical, Surface and Nuclear Microscopic Assessment of Porous Silicon Formed in HF-Acetonitrile

Published online by Cambridge University Press:  28 February 2011

Z. C. Feng
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Department of Physics, National University of Singapore, S0511, Singapore
Z. Chen
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
K. R. Padmanabhan
Affiliation:
Department of Physics, National University of Singapore, S0511, Singapore
K. Li
Affiliation:
Department of Physics, National University of Singapore, S0511, Singapore
A. T. S. Wee
Affiliation:
Department of Physics, National University of Singapore, S0511, Singapore
J. Lin
Affiliation:
Department of Physics, National University of Singapore, S0511, Singapore
K. L. Tan
Affiliation:
Department of Physics, National University of Singapore, S0511, Singapore
K. T. Yue
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
A. Bhat
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
A. Rohatgi
Affiliation:
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Get access

Abstract

A new type of HF solution, HF-acetonitrile (MeCN), has been employed to produce 10-30 μm thick porous silicon (P-Si) layers by photoelectrochemical etching of different types of Si wafers, Si(100), Si(111) and polycrystalline Si, with different resistivities. A combined optical, surface and nuclear microscopic assessment of these P-Si layers was performed using photoluminescence (PL), Raman scattering, X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectroscopy (RBS). The PL emission intensities, Raman line shapes and structural features are strongly dependent on the properties of the substrates such as the crystallinity and resistivity of the Si wafers used for forming P-Si. With increasing resisitivity of the Si(100) wafers, the resulting P-Si layers show a slight blue-shift of their visible light emission peak energy, an up-shift of the peak position and a narrowing of the band width of the dominant Raman band, and a decrease in the amount of residual elemental Si on the surface. Those Si(l 11) wafers, etched in HF-MeCN, showed no porous structures and no visible light emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
2 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3 Iyer, S. S., Collins, R. T. and Canham, L. T. ed., Light Emission from Silicon, Materials Research Society Symposium Proceedings, Vol., Materials Research Society, Pittsburgh, 1992.Google Scholar
4 Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I. and Aoyagi, Y. ed., Microcrystalline Semiconductors: Materials Science and Devices, Materials Research Society Symposium Proceedings, Vol., Materials Research Society, Pittsburgh, 1993.Google Scholar
5 Tischler, M. A., Collins, R. T., Thewalt, M. L. W. and Abstreiter, A., Silicon Based Optoelectronic Materials, Materials Research Society Symposium Proceedings, Vol., Materials Research Society, Pittsburgh, 1993.Google Scholar
6 Feng, Z. C. and Tsu, R. edit, Porous Silicon, World Scientific, Singapore, 1994.Google Scholar
7 Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
8 Xu, Z. Y., Gal, M. and Gross, M., Appl. Phys. Lett. 60, 1375 (1992).Google Scholar
9 Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E. and Season, P. C., Phys. Rev. B45, 13788 (1992).Google Scholar
10 Vasquez, R. P., Fathauer, R. W., George, T., Ksendzov, A. and Lin, T. L., Appl. Phys. Lett. 60, 1004 (1992).Google Scholar
11 Feng, Z. C., Payne, J. R. and Covington, B. C., Solid State Commun. 86, 131 (1993).Google Scholar
12 Feng, Z. C., Wee, A. T. S. and Tan, K. L., J. Phys. D: Appl. Phys. 27, 19681975 (1994).Google Scholar
13 Feng, Z. C. and Wee, A. T. S., in ref. [6], p. 175-194.Google Scholar
14 Propst, E. K. and Kohl, P. A., J. Electrochem. Soc. 141, 1006 (1994).Google Scholar
15 Rieger, M. M. and Kohl, P. A., J. Electrochem. Soc. submitted.Google Scholar
16 Propst, E. K., Rieger, M. M., Vogt, K. W. and Kohl, P. A., J. Electrochem. Soc. submitted.Google Scholar
17 Friedersdort, L. E., Searson, P. C., Prokes, S. M., Glembocki, O. J.and Macaulay, J. M., Appl. Phys. Lett. 60, 2285 (1992).Google Scholar
18 Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
19 Qin, G. G., in ref. [6], p. 195-218.Google Scholar