Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:10:29.207Z Has data issue: false hasContentIssue false

Coherency Strain Modeling of Elastic Moduli in CU/NB Multilayers

Published online by Cambridge University Press:  28 February 2011

A. F. Jankowski*
Affiliation:
Lawrence Livermore National Laboratory, Chemistry and Materials Science, P.O. Box 808, Livermore, California 94550
Get access

Abstract

An anomalous decrease in the elastic moduli of Cu/Nb multilayers has been observed via acoustic wave measurements. The decrease occurs for (111) fcc Cu and (110) bcc Nb layered structures with repeat periods between 1 and 5 nm. The coherency strain model has been used to simulate modulus enhancement in noble/transition metal multilayers. This approach addresses the atomic displacements corresponding with the lattice distortions of biaxially stressed layers. Elastic moduli are derived with respect to higher order differentials of a Born-Mayer type potential for nearest neighbor ions. The elastic moduli anomalies of Cu/Nb multilayers will be modelled within this conceptual framework.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jankowski, A.F., Lawrence Livermore National Laboratory, UCRL -97446, 35 pages (1987).Google Scholar
2. Jankowski, A.F. and Tsakalakos, T., J.Phys.F:Met.Phys. 15, 1279 (1985).Google Scholar
3. Jankowski, A.F., J.Phys.F:Met.Phys. 18, 413 (1988).Google Scholar
4. Yang, W.M.C., Tsakalakos, T. and Hilliard, J.E., J.Appl.Phys. 48, 876 (1977).Google Scholar
5. Henein, G.E. and Hilliard, J.E., J.Appl.Phys. 54, 728 (1983).CrossRefGoogle Scholar
6. Tsakalakos, T. and Hilliard, J.E., J.Appl.Phys. 54, 734 (1983).Google Scholar
7. Bruce, L.A. and Jaeger, H., Phil.Mag.A 38, 223 (1978).CrossRefGoogle Scholar
8. Bauer, E., Appl.Surf.Sci. 11/12, 479 (1982).Google Scholar
9. vanderMerwe, J.H. and Braun, M.W.H., Appl.Surf.Sci. 22/23, 545 (1985).Google Scholar
10. Homma, H., Yang, K.Y. and Schuller, I.K., Phys.Rev.B 36, 9435 (1987).CrossRefGoogle Scholar
11. Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C.M. and Schuller, I.K., Phys.Rev.Lett. 48, 166 (1982).CrossRefGoogle Scholar
12. Schuller, I.K., Phys.Rev.Lett. 44, 1597 (1980).Google Scholar
13. Lowe, W.P., Barbee, T.W. Jr. , Geballe, T.H. and McWhan, D.B., Phys.Rev.B 24, 6193 (1981).Google Scholar
14. Jankowski, A.F., Lawrence Livermore National Laboratory, UCRL -99830, 14 pages (1988).Google Scholar
15. Grimsditch, M., Mater.Res.Soc.Symp.Proc. 77, 23 (1987).Google Scholar
16. Soma, T., J.Phys.F:Met.Phys. 4, 2157 (1974).CrossRefGoogle Scholar
17. Kittel, C., Introduction to Solid State Physics, (J. Wiley, New York, 4th edn., 1971) p.149.Google Scholar
18. Magerl, A., Berre, B. and Alefeld, G., Phys.Stat.Sol.A 36, 161 (1976).Google Scholar
19. Khan, M.R., Chun, C.S.L., Felcher, G., Grimsditch, M., Kueny, A., Falco, C. and Schuller, I.K., Phys.Rev.B 27, 7186 (1983).Google Scholar
20. Bisanti, P., Brodsky, M.B., Felcher, G.P., Grimsditch, M. and Sill, L.R., Phys.Rev.B 35, 7813 (1987).CrossRefGoogle Scholar