Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T08:44:20.799Z Has data issue: false hasContentIssue false

Coadsorption of Nitriles and Co On Cu-Zsm-5: An In Situ FTIR Spectroscopic Study

Published online by Cambridge University Press:  10 February 2011

J. Szanyi
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 LA-UR 96-1239
M. T. Paffett
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545 LA-UR 96-1239
Get access

Abstract

The coadsorption of acetonitrile (ACN) or deuterated acetonitrile (dACN) with CO at Cu-ZSM-5 reveals several interesting features concerning the partial valency of Cu. Specifically, CO binds at Cu+1 and Cu° centers (in the absence of preadsorbed ACN) and exhibits C-O stretching frequencies of 2157 cm−1 and 2112 cm−1, respectively. Carbon monoxide readily adsorbs at an ACN (or dACN) saturated Cu-ZSM-5 and exhibits a C-O stretch of 2122 cm−1, a value more consistent with a partially reduced Cu+1 center. Furthermore, the IR cross section for the CN stretch in a number of nitriles (ACN, dACN, and benzonitrile) coadsorbed with CO displays interesting effects attributed to rehybridization and changes in CN dipole moment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iwamoto, M., in Zeolites and Related Microporous Materials: State of the Art 1994, edited by J., Weitkamp et al., Studies in Surface Science and Catalysis, Vol.84, ( Elsevier Sci. B.V., 1994) pp. 1395.Google Scholar
2. Iwamoto, M., Mizuno, N., and Yahiro, H., in New Frontiers in Catalysis, edited by Guczi, L. et al, Proceedings of the 10th International Congress on Catalysis, 19–24 July, 1992, Budapest, Hungary (Elsevier Sci. B.V., 1993) pp. 1287.Google Scholar
3. Valyon, J. and Hall, W. K., in New Frontiers in Catalysis, edited by L. Guczi et al, Proceedings of the 10th International Congress on Catalysis, 19–24 July, 1992, Budapest, Hungary (Elsevier Sci. B.V., 1993) pp. 1287.Google Scholar
4. Shelef, M., Montreuil, C. N. and Jen, H. W., Cat.Lett., 26, 277 (1994).Google Scholar
5. Smits, R., and Iwasawa, Y., Appl. Catal.B, 6, L201, (1995).Google Scholar
6. Adelman, B. J., Beutel;, T., Lei, G.-D., and Sachtler, W. M. H., J. Catal., 158, 327, (1996).Google Scholar
7. Ballinger, T. H., and Yates, J. T., Langmuir, 7, 3041, (1991).Google Scholar
8. Spoto, G., Bordiga, S., Scarano, D., and Zecchina, A., Catal. Lett., 13, 39 (1992).Google Scholar
9. Szanyi, J., and Paffett, M. T., unpublished results, 1996.Google Scholar
10. Spoto, G., Bordiga, S., Zecchina, A., Ricchiardi, G., and Matra, G., Appl. Catal. B, 3, 151 (1994).Google Scholar
11. Neuhaus, A. and Dehnicle, K. Zeitschrift fur Anorganische and Allgemeine Chemie, 619, 775 (1993).Google Scholar
12. Schindler, S. Szalda, D., and Creutz, C., Inorg. Chem., 31, 2255 (1992).Google Scholar
13. Brand, H. and Redondo, A., LANL, (private communication- 3/96).Google Scholar