Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T04:06:01.554Z Has data issue: false hasContentIssue false

Co2Si, CrSi2, ZrSi2 and TiSi2 Formation Studied by a Radioactive 31Si Marker Technique

Published online by Cambridge University Press:  15 February 2011

A. P. Botha
Affiliation:
Southern Universities Nuclear Institute, P.O. Box 17, Faure 7131 (South Africa)
R. Pretorius
Affiliation:
Southern Universities Nuclear Institute, P.O. Box 17, Faure 7131 (South Africa)
Get access

Extract

Radioactive 31Si (half-life, 2.62 h) was used as a marker to study Co2Si, CrSi2, TiSi2 and ZrSi2 formation. By marking the initial layer of silicide with radioactive silicon atoms and by measuring the activity profile in the silicide layer after further silicide formation, the dominant diffusing species and its mechanism of diffusion during the formation of these silicides could be determined. For Co2Si it was found that cobalt is the diffusing species, while disilicide formation was found to take place by silicon substitutional (vacancy) diffusion, with a high self-diffusion coefficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chu, W. K., Kraütle, H., Mayer, J. W., Müller, H., Nicolet, M.-A. and Tu, K. N., Appl. Phys. Lett., 25 (1974) 454.CrossRefGoogle Scholar
2 Tu, K. N., Chu, W. K. and Mayer, J. W., Thin Solid Films, 25 (1975) 403.Google Scholar
3 Lau, S. S., Feng, J. S.-Y., Olowolafe, J. O. and Nicolet, M.-A., Thin Solid Films, 25(1975) 415.Google Scholar
4 Chu, W. K., Lau, S. S., Mayer, J. W., Müller, H. and Tu, K. N., Thin Solid Films, 25 (1975) 393.CrossRefGoogle Scholar
5 Martinez, A., Esteve, D., Guivarc'h, A., Auvray, P., Henoc, P. and Pelous, G., Solid-State Electron., 23 (1980) 55.CrossRefGoogle Scholar
6 Van Gurp, G. J., van der Weg, W. E. and Sigurd, D., J. Appl. Phys., 49(1978)4011.Google Scholar
7 Van Gurp, G. J., Sigurd, D. and van der Weg, W. F., Appl. Phys. Lett., 29 (1976) 159.CrossRefGoogle Scholar
8 Baglin, J., d'Heurle, F. and Petersson, S., Appl. Phys. Lett., 33 (1978) 289.Google Scholar
9 Baglin, J. E. E., d'Heurle, F. M., Hammer, W. N. and Petersson, S., Nucl. Instrum. Methods, 168 (1980) 491.Google Scholar
10 Pretorius, R., Ramiller, C. L., Lau, S. S. and Nicolet, M.-A., Appl. Phys. Lett., 30 (1977) 501.Google Scholar
11 Pretorius, R., Ramiller, C. L. and Nicolet, M.-A., Nucl. Instrum. Methods, 149 (1978) 629.Google Scholar
12 Pretorius, R., J. Electrochem. Soc., 128 (1981) 107.CrossRefGoogle Scholar
13 Tu, K. N. and Mayer, J. W., in Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films- Interdiffusion and Reactions, Wiley, New York, 1978, Chap. 10.Google Scholar
14 Pretorius, R., Olowolafe, J. O. and Mayer, J. W., Philos. Mag., 37 (1978) 327.Google Scholar
15 Pretorius, R. and Botha, A. P., Proc. 5th Int. Thin Films Congr., Herzlia-on-Sea, Israel, September 1981, in Thin Solid Films, 91 (1982) 99.Google Scholar