Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:42:11.620Z Has data issue: false hasContentIssue false

CMOS Compatible Synthesis of Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Takashi Uchino
Affiliation:
[email protected], University of Southampton, Electronics and Computer Science, Southampton, SO17 1BJ, United Kingdom
Konstantinos N. Bourdakos
Affiliation:
[email protected], University of Southampton, Physics and Astronomy, B46 - Physics, University Road, Southampton, SO17 1BJ, United Kingdom
Gregory N. Ayre
Affiliation:
[email protected], University of Southampton, Physics and Astronomy, Southampton, SO17 1BJ, United Kingdom
Cornelis H. de Groot
Affiliation:
[email protected], University of Southampton, Electronics and Computer Science, Southampton, SO17 1BJ, United Kingdom
Peter Ashburn
Affiliation:
[email protected], University of Southampton, Electronics and Computer Science, Southampton, SO17 1BJ, United Kingdom
David C. Smith
Affiliation:
[email protected], University of Southampton, Physics and Astronomy, Southampton, SO17 1BJ, United Kingdom
Get access

Abstract

A technique to synthesize high-quality single walled carbon nanotubes (SWNTs) using chemical vapour deposition (CVD) on Ge Stranski-Krastanow dots has been developed. From transmission electron microscopy and Raman measurements, the grown carbon nanotubes (CNTs) are identified as SWNTs with diameters ranging from 1.6 to 2.1 nm. Extensive scanning electron microscopy and atomic force characterisation of the effect of each stage in the growth process is presented. Our hypothesis is that pre-treatment stages lead to the formation of Ge nanoparticles, which act as seeds for CNT growth. This technique demonstrates the ability to synthesize high-quality SWNTs without the need for a metal catalyst, using processes and equipment standard to a silicon foundry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S. and Dai, H., MRS Bull. 29, 237 (2004)Google Scholar
2. Avouris, P., Appenzeller, J., Martel, R. and Wind, S. J., Proc. IEEE 91, 1772 (2003)Google Scholar
3. Misewich, J. A., Martel, R., Avouris, Ph., Tsang, J. C., Heinze, S. and Tersoff, J., Science 300, 783 (2003)Google Scholar
4. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes (World Scientific Publishing, Singapore, 1998)Google Scholar
5. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L. and Lieber, C. M., Science 289, 94 (2000)Google Scholar
6. Chung, D. S., Park, S. H., Lee, H. W., Choi, J. H., Cha, S. N., Kim, J. W., Jung, J. E., Jin, Y. W., Park, Y. J. and Yu, J. B., Appl. Phys. Lett. 80, 4045 (2002)Google Scholar
7. Horibe, M., Nikei, M., Kondo, D., Kawataba, A. and Awano, Y., Jpn. J. of App. Phys. 44, 5309 (2005)Google Scholar
8. Sharma, B. L., Diffusion in Semiconductors (Trans. Tech. Publ., Germany, 1970)Google Scholar
9. Kusonoki, M., Rokkaku, M. and Suzuki, T., Appl. Phys. Lett. 71, 2620 (1997)Google Scholar
10. Botti, S., Ciardi, R., Asilyan, L., Dominicis, L. De, Fabbri, F., Orlanducci, S. and Fiori, A., Chem. Phys. Lett. 400, 264 (2004)Google Scholar
11. Botti, S., Ciardi, R., Terranova, M. L., Piccirillo, S., Sessa, V., Rossi, M. and VittoriAntisardi, M., Appl. Phys. Lett. 80, 1441 (2002)Google Scholar
12. Uchino, T., Bourdakos, K. N., Groot, C. H. de, Ashburn, P., Kiziroglou, M. E., Dilliway, G. D. and Smith, D. C., Appl. Phys. Lett. 86, 233110 (2005)Google Scholar
13. Takagi, D., Hibino, H., Suzuki, S., Kobayashi, Y., Homma, Y., Nano. Lett. 7, 2272 (2007)Google Scholar
14. Neuwald, U., Feltz, A., Memmert, U. and Behm, R. J., J. Appl. Phys. 78, 4131 (1995)Google Scholar
15. Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Jorio, A., Phys. Rep. 409, 47 (2005)Google Scholar
16. Brown, S. D. M., Jorio, A., Corio, P., Dresselhaus, M. S., Dresselhaus, G., Saito, R. and Kneipp, K., Phys. Rev. B 63, 155414 (2001)Google Scholar
17. Harutyuyan, A. R., Tokune, T., and Mora, E., Appl. Phys. Lett. 87, 51919 (2005)Google Scholar
18. Landolt-Bornstein Series, Group IV Physical Chemistry, Vol. 5B (Springer, Berlin, 1992)Google Scholar