Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T03:24:03.488Z Has data issue: false hasContentIssue false

Closed loop microfluidic platform based on domain wall magnetic conduits: a novel tool for biology and medicine

Published online by Cambridge University Press:  21 November 2014

M. Monticelli
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
D. Petti
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
E. Albisetti
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
M. Cantoni
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
E. Guerriero
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
R. Sordan
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
M.Carminati
Affiliation:
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. Da Vinci 32, 20131 Milano, Italy
G. Ferrari
Affiliation:
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. Da Vinci 32, 20131 Milano, Italy
M. Sampietro
Affiliation:
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. Da Vinci 32, 20131 Milano, Italy
R. Bertacco
Affiliation:
CNISM and LNESS - Politecnico di Milano, Via Anzani 42, 22100 Como, Italy
Get access

Abstract

In this paper we present an innovative on-chip platform suitable for the simultaneous manipulation and detection of the transit of a single magnetic bead. This system is based on the controlled displacement of constrained magnetic domain walls (DWs) that are used to move and sense particles in suspension over the chip. To this scope, the high stray field from the transverse DWs created at the corners of ferromagnetic zig-zag structures is used for particles manipulation, while electrical contacts flanking a single corner are employed to simultaneously monitor the DW passage through that corner, via anisotropic magneto resistance (AMR) measurements. A single DW carrying a magnetic particle is nucleated and manipulated within the zig-zag shaped magnetic conduit, trough the action of external magnetic fields. At the same time, the variation of the voltage drop across a corner flanked by a pair of electrical leads is measured, allowing to detect the transit of the DW thanks to the change of the relative orientation of current and spins at the corner related to the peculiar micromagnetic configuration of the DW (AMR). Work is in progress in order to selectively distinguish the transit of a naked DW from that of a DW bound to a magnetic particle. This work paves the way to the development of a closed-loop microlfuidic platform for on-chip bead manipulation, where single bead can be finely moved and their motion continuously checked, via AMR electrical detection and without need of optical monitoring, in a fully integrated closed-loop system.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dobson, Jon. 2008 Nat. Nanotechnol. 3139 Google Scholar
Di Corato, R., Bigall, N., Ragusa, A., Dorfs, D., Genovese, A., Marotta, R., Manna, L., and Pellegrino, T.. ACS Nano, 2011, 5(2), pp 11091121 10.1021/nn102761tCrossRefGoogle Scholar
Graham, D. L., Ferreira, A. H. and Freitas, P. P.. 2004 Trends Biotechnol. 22 455 10.1016/j.tibtech.2004.06.006CrossRefGoogle Scholar
Li, G., Joshi, V., White, R. L., Wang, S. X., Kemp, T. X., Webb, C., Davis, R.W. and Sun, S.. 2003 J. Appl. Phys. 93 7557 10.1063/1.1540176CrossRefGoogle Scholar
Albisetti, E., Petti, D., Cantoni, M., Damin, F., Torti, A., Chiari, M. and Bertacco, R.. 2013 Biosensors and Bioelectronics. 47 213 10.1016/j.bios.2013.03.016CrossRefGoogle Scholar
Jiang, Z., Llandro, J., Mitrelias, T. and Bland, J.. 2006 J. Appl. Phys. 88 08S105 10.1063/1.2176238CrossRefGoogle Scholar
Miller, M., Prinz, G. A., Cheng, S.F., and Bounnak, S.. 2002 Appl. Phys. Lett. 81 2211.10.1063/1.1507832CrossRefGoogle Scholar
Vavassori, P., Metlushko, V., Ilic, B., Gobbi, M., Donolato, M., Cantoni, M. and Bertacco, R.. 2008 Appl. Phys. Lett. 93 203502 10.1063/1.3030984CrossRefGoogle Scholar
Donolato, M., Gobbi, M., Vavassori, P., Leone, M., Cantoni, M., Metlushko, V., Ilic, B., Zhang, M., Wang, S. and Bertacco, R.. 2009 Nanotechnology 20(38), 385501.10.1088/0957-4484/20/38/385501CrossRefGoogle Scholar
Block, S. M., Goldstein, L. S., Schnapp, B. J.. Nat 1990; 10.1038 348352 10.1038/348348a0CrossRefGoogle Scholar
Nguyen, N. T., Shaegh, S. A. M., Kashaninejad, N., Phan, D.T.. Advanced Drug Delivery Reviews 65 (2013) 14031419.10.1016/j.addr.2013.05.008CrossRefGoogle Scholar
Gunnarsson, K., Roy, P. E., Felton, S., et al. . Adv Mater. 2005;17(14):17301734.10.1002/adma.200401880CrossRefGoogle Scholar
Donolato, M., Vavassori, P., Gobbi, M., Deryabina, M., Hansen, M. F., Metlushko, V., Ilic, B., Cantoni, M., Petti, D., Brivio, S., and Bertacco, R.. 2010 Adv. Material. 22, 2706.10.1002/adma.201000146CrossRefGoogle Scholar
Bertacco, R., Donolato, M., Gobbi, M., Cantoni, M., Brivio, S., Petti, D., Vavassori, P.. PCT/EP2010/000879 (2009), nanoGune Consolider Google Scholar
Donolato, M., Torti, A., Kostesha, N., Deryabina, M., Sogne, E., Vavassori, P., Hansenband, M. F. Bertacco, R.. 2011 Lab Chip 11, 2976 10.1039/c1lc20300bCrossRefGoogle Scholar
Torti, A., Mondiali, V., Cattoni, A., Donolato, M., Albisetti, E., Haghiri-Gosnet, A., Vavassori, P. and Bertacco, R.. 2012 Appl. Phys. Lett. 101 142405 10.1063/1.4755785CrossRefGoogle Scholar
Janssen, X., van Ijzendoorn, L. and Prins, M.. 2007 Biosens. Bioelectron. 23 833 10.1016/j.bios.2007.08.023CrossRefGoogle Scholar
Descharmes, N., Dharanipathy, U. P., Diao, Z., Tonin, M. and Houdré, Romuald. 2013 Lab Chip 13, 32683274 10.1039/c3lc50447fCrossRefGoogle Scholar