Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:44:33.019Z Has data issue: false hasContentIssue false

Classical and Rapid Thermal Process Effects on Oxygen and Carbon Precipitation in Silicon

Published online by Cambridge University Press:  26 February 2011

K. Mahfoud
Affiliation:
Lab.PHASE (UPR du CNRS n°292), BP20, F-67037 Strasbourg Cedex2, FRANCE
M. Loghmarti
Affiliation:
Lab.PHASE (UPR du CNRS n°292), BP20, F-67037 Strasbourg Cedex2, FRANCE
J. C. Muller
Affiliation:
Lab.PHASE (UPR du CNRS n°292), BP20, F-67037 Strasbourg Cedex2, FRANCE
P. Siffert
Affiliation:
Lab.PHASE (UPR du CNRS n°292), BP20, F-67037 Strasbourg Cedex2, FRANCE
Get access

Abstract

We report observations on the effects of rapid thermal annealing on oxygen and carbon content of different single and multicrystalline silicon materials.

From the comparison between the resulting effects of conventional and short thermal annealing, we can deduce that the increase of the concentration of interstitial oxygen after a rapid thermal annealing (RTA) is due to the dissociation of some microprecipitates in silicon, which is significantly affected by the initial oxygen content, thermal history, defects and impurity content such as carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hu, S. M. . J. Electrochem. Soc. 139., 2066 (1992).Google Scholar
2. Shimura, F., Tsuya, H. and Kawamura, T.. Appl. Phys. Lett. 38, 867 (1981).Google Scholar
3. Pang, S. K. and Rohatgi, A.. J. Electrochem. Soc. 138, 523 (1991).Google Scholar
4. Wijaranakula, W.. J. Appl. Phys. 72, 2713 (1992).Google Scholar
5. Tice, W. K. and Tan, T. Y., Appl. Phys. Lett. 28, 564 (1976).Google Scholar
6. Polignano, M. L., Cerofolini, G. F., Bender, H., Claeys, C. and Reffle, J.. Phys. Stat. Sol. (a). 103, 307 (1987).Google Scholar
7. Shimanuki, Y., Furuya, H., Suzuki, I. and Murai, K., Jpn. J. Appl. Phys. 24, 1594 (1985).Google Scholar
8. Zimmerman, H. and Falster, R.. Appl. Phys. Lett. 60, 3250 (1992).Google Scholar
9. Wada, K., Nakamishi, H., Takaoka, H. and Inoue, N., J. Cryst. Growth. 57, 535 (1982).Google Scholar
10. Oehrlein, G. S., Linddstrom, J. L. and Corbett, J. W., Appl. Phys. Lett. 40, 241 (1982).Google Scholar
11. Wijaranakula, W. and Matlock, J. H., J. Electrochem. Soc. 138, 2153 (1991).Google Scholar
12. Poggi, A. and Susi, E., J. Electrochem. Soc. 138, 1841 (1991).Google Scholar
13. Eichhammer, W., Vu-Thuong-Quat, and Siffert, P., J. Appl. Phys. 66, 3857 (1989).Google Scholar
14. Mathiot, D., Appl. Phys. Lett. 58, 131 (1991).Google Scholar
15. Lin, W. and Oates, A. S., Appl. Phys. Lett. 56, 128 (1990).Google Scholar
16. Varker, C. J., Whitfield, J. D. and Fejes, P. L. in Defects in Semicoductor II, edited by Mahajan, S. and Corbett, J. W. (Mater. Res. Soc. Proc. 14, New York, 1983) pp.187193.Google Scholar
17. Murray, R., Graff, K., Pajot, B., Vandendriessche, S., Griepink, B. and Marchandise, H., J. Electrochem. Soc. 139, 3582 (1992).Google Scholar
18. Newman, R. C. and Willis, J. B., J. Phys. Chem. Solids. 26, 373 (1964).Google Scholar
19. Pizzini, S., Narducci, D. and Rodot, M., Revue Phys. Appl. 23, 101 (1988).Google Scholar
20. Davis, J. R. Jr., Rohatgi, A., Hopkins, R. H., Blais, P. D., Rai-Choudhrury, P., McCormick, J. R. and Mollenkopf, H. C., IEEE Trans. Electron. Devices. 1980, 677.Google Scholar
21. Hartiti, B, Muller, J. C. and Siffert, P.. Appl. Phys. Lett. 59, 425 (1991).Google Scholar