Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:39:50.913Z Has data issue: false hasContentIssue false

Cl Doping Effect by Thermal Treatment with KCl for ZnO Single Crystals

Published online by Cambridge University Press:  12 April 2011

Akira Fujimoto
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
Yoshiyuki Harada
Affiliation:
Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
Get access

Abstract

We investigated the optical and electrical properties of ZnO single crystals coated with KCl by examining the photoluminescence (PL) at 9 K and the temperature dependence of the carrier concentration. The band-edge PL intensity of the KCl-coated sample was much larger than that of the uncoated sample. Moreover, a substantial increase in Hall electrons was observed in the coated sample. X-ray photoelectron spectroscopy revealed bonding between chlorine and zinc atoms in the coated sample. Therefore, coating the surface of ZnO single crystals with KCl enhances the donor concentration and improves the surface state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hosono, H., J. Non-Crystalline Solids 352, 851858 (2006).Google Scholar
2. Fujimoto, A., Kitamura, M., Kobori, H., Yamasaki, A., Sugimura, A., Ando, A., Kawanaka, H., Naitoh, Y., Shimizu, T., Physica E 42 11341137 (2010).Google Scholar
3. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A. and Gnade, B. E., J. Appl. Phys. 79, 79837990 (1996).Google Scholar
4. Ohshima, E., Ogino, H., Niikura, I., Maeda, K., Sato, M., Ito, M. and Fukada, T., Journal of Crystal Growth 260, 166170 (2004).Google Scholar
5. Harada, Y. and Hashimoto, S., Phys. Rev. B 68, 045421 (2003).Google Scholar
6. Harada, Y., Kondo, H., Ichimura, N. and Hashimoto, S., Jpn. J. Appl. Phys. 38, L1318L1320 (1999).Google Scholar
7. Ota, T., Sasa, S., Harada, Y. and Hashimoto, S., phys. stat. sol. (b) 229, 815818 (2002).Google Scholar
8. Wu, X. L., Siu, G. G., Fu, C. L. and Ong, H. C., Appl. Phys. Lett. 78, 22852287 (2001).Google Scholar
9. Reynolds, D. C., Look, D. C., Jogai, B., Van Nostrand, J. E., Jones, R., and Jeney, J., Solid State Commun. 106, 701704 (1998).Google Scholar
10. Kassier, G. H., Hayes, M., Auret, F. D., Mamor, M. and Bouziane, K., J. Appl. Phys. 102, 014903 (2007).Google Scholar
11. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G. and Harsch, W. C., Solid State Commun. 105, 399401 (1998).Google Scholar
12. Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, edited by Chastain, J. and King, R. C. Jr. (Physical Electronics, Inc., 1995) pp. 6263 and pp. 6667.Google Scholar