Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T06:44:58.975Z Has data issue: false hasContentIssue false

Chloride Diffusion in Blended Cement Concrete Made with Quartzite Recycled Aggregate

Published online by Cambridge University Press:  22 November 2012

Claudio J. Zega
Affiliation:
LEMIT, 52 e/121 y 122, (1900) La Plata, Argentina CONICET, Argentina
Yury A. Villagrán-Zaccardi
Affiliation:
LEMIT, 52 e/121 y 122, (1900) La Plata, Argentina CONICET, Argentina
Ángel A. Di Maio
Affiliation:
LEMIT, 52 e/121 y 122, (1900) La Plata, Argentina CONICET, Argentina
Get access

Abstract

Using waste materials as aggregate for new concrete production is a growing tendency, because of several environmental problems. Recycled coarse aggregate (RCA) obtained from crushing waste concrete has lower density and greater absorption than natural aggregate, because of the higher porosity of the mortar attached to the RCA particles. Compressive strength level achieved in recycled concrete may be similar to that of conventional concrete. On the other hand, durable performance of recycled concrete is variable, and diverse evidence can be found in literature for different durability issues. In this paper, chloride ingress in conventional and recycled concrete, made with quartzite aggregate and blended Portland cement is evaluated when immersed in NaCl solution. Two strength levels (21 and 35 MPa) and two contents of RCA (25 and 75%), as substitute of natural quartzite aggregate, were considered. The chloride diffusion coefficient and the relationship between water-soluble chloride and bound chloride are analyzed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zega, C.J., Di Maio, A.A., Bol. Tec. (IMME), 45 (2), 111 (2007).Google Scholar
Limbachiya, M.C., Leelawat, T., Dhir, R.K., Mater. Struct., 33, 574580 (2000).CrossRefGoogle Scholar
Otsuki, N., Miyazato, S., Yodsudjai, W., J. Mater. Civ. Eng., (ASCE), 15, 443451 (2003).CrossRefGoogle Scholar
Gonçalves, A., Esteves, A., Vieira, M., in International RILEM Conference on The use of recycled materials in building and structures, (Barcelona, Spain), 554562 (2004).Google Scholar
Taus, V.L., Villagrán, Y.A., Di Maio, A.A., in Fifth ACI/CANMET International Conference on High-Performance Concrete Structures and Materials, (Manaus, Brazil), 2539, (2008).Google Scholar
Villagrán Zaccardi, Y.A., Taus, V.L., Di Maio, A.A., ACI Mater. J., 107, 593601, (2010).Google Scholar
Zega, C.J., Villagrán Zaccardi, Y.A., Di Maio, A.A., Mater. Struct., 43, 195202, (2010).CrossRefGoogle Scholar
CIRSOC 201, Reglamento Argentino de Estructuras de Hormigón, (INTI, Buenos Aires, Argentina, 2005), 482p.Google Scholar
EHE, Instrucción de Hormigón Estructural. Anejo 15, Recomendaciones para la utilización de hormigones reciclados, (Ministerio de Fomento, Spain, 2008), 526541.Google Scholar
RILEM Recommendation 121-DRG, Mater. Struct., 27, 557559, (1994).CrossRefGoogle Scholar
Grübl, P., Rühl, M., “German Committee for Reinforced Concrete (DafStb) – Code: Concrete with Recycled Aggregates,” in Proc. Int. Symposium Sustainable Construction: Use of Recycled Concrete Aggregates, (London, UK), (1998). (Available in www.b-i-m.de)Google Scholar
Di Maio, A.A., Zega, C.J., Traversa, L.P., J. ASTM Int., 2, (2005), (www.astm.org)Google Scholar
ASTM C39, (ASTM International, West Conshohocken, PA, USA, 2003), 5p.Google Scholar
Leite, M.B., Pedrozo, P.H., Dal Molin, D.C.C., “Agregado reciclado para concreto: proposta de desenvolvimento de um método para determinação da taxa de absorção do material,” in Proc. 42º Congreso Brasilero del Hormigón (IBRACON, Fortaleza, Brazil, 2000).Google Scholar
Villagrán Z., Y.A., Zega, C.J., Di Maio, A.A., J. Mater. Civ. Eng., 20, 449455, (2008).CrossRefGoogle Scholar
Skoog, D.A.. West, D.M., Holler, F.J., Crouch, S.R., Fundamentos de Química Analítica 8va. Edición, (Thompson Learning, México D.F., Mexico, 2005), 1065p.Google Scholar
ASTM C1152, (ASTM International, West Conshohocken, PA, USA, 2003), 3p.Google Scholar
Shewmon, P.G., Diffusion in solids . McGraw-Hill Book Company Inc., (USA) (1963).Google Scholar
Baroghel-Bouny, V., in Proceedings Third RILEM workshop on Testing and Modeling the Chloride Ingress into Concrete, (Madrid, Spain, 2002), 137163.Google Scholar
Frederiksen, J.M., Sørensen, H.E., Andersen, A., Klinghoffer, O., HETEK, The effect of the w/c ratio on chloride transport into concrete - Immersion, migration and resistivity tests. The Road Directorate, (Copenhagen, Denmark, 1997), 35p.Google Scholar