Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:31:31.210Z Has data issue: false hasContentIssue false

Chemistry of Point Defect in Silicon and its Applications in Semiconductor Technology

Published online by Cambridge University Press:  26 February 2011

S. Pizzini
Affiliation:
INFM- Department of Physical Chemistry and Electrochemistry, Via Golgi, 10 20133 Milano, (Italy)
S. Binetti
Affiliation:
INFM- Department of Physical Chemistry and Electrochemistry, Via Golgi, 10 20133 Milano, (Italy)
M. Acciarri
Affiliation:
INFM- Department of Physical Chemistry and Electrochemistry, Via Golgi, 10 20133 Milano, (Italy)
Get access

Abstract

The chemistry of the interactions between point defects and impurities is discussed by considering first the general thermodynamic and kinetic aspects of these reactions, deserving major attention to the identity of of the stable chemical species eventually formed and to the boundary conditions for diffusion controlled and reaction controlled interaction processes.

The second part of the paper is instead dedicated to the analysis of the chemistry of carbon, oxygen, hydrogen and point defects in silicon, which is a system of major technological interest.

We postulate that at low enough temperatures, when homogeneous nucleation processes are slow, spinodal decomposition assists oxygen aggregation phenomena. We postulate, also, on the basis of the existing knowledge, that carbon and hydrogen favour alternative reaction paths for oxygen in the due of clustering processes and discuss the hydrogen-enhanced oxygen diffusivity in the frame of a conventional trapping model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Rao, C.N.R., Gopalakrishan, J., New directions in solid state Chemistry, Cambridge University Press (Cambridge, 1986)Google Scholar
[2] Van Oosten, A.B., PhD Thesis, University of Amsterdam (1989)Google Scholar
[3] Semiconductor Silicon 1977,1981,1986,1990, The Electrochem Soc. Inc., (1977,1981, 1986,1990) and references cited herein.Google Scholar
[4] Mashovets, T.V., Sov. Phys. Semicond. 18, 5 (1982)Google Scholar
[5] Sumino in: Solid state Phenomena, Vol. 6 & 7, TransTech Publ. (Zuerich, 1989) pp. 197–210Google Scholar
[6] Orlowski, M. in: Semiconductor Silicon 1994, Vol. 94–10, The Electrochem. Soc. (1994). pp.579592 Google Scholar
[7] Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinsky, P.J., Caefer, C.E., Materials Science Forum, Vols. 38–41, TransTech Publ., Zuerich,(1989) pp. 141150 Google Scholar
[8] Watkins, G.D., Materials Sci. Forum, Vols. 38–41, TransTech Publ., Zuerich(1989) pp. 3950 Google Scholar
[9] Gehlhoff, W., Rehse, U., Solid State Phenomena, Vols. 6 & 7, TransTech Publ., Zuerich (1989) pp.257264 Google Scholar
[10] Crawford, J.H. jr. Slifkin, L.M., Point defects in solids, Plenum Press (1972) Vol.1Google Scholar
[11] Kang, J.S., Schroder, D.K., J. Appl. Phys. 65, 2974 (1989)Google Scholar
[12] Pizzini, S. in: Defects in Electronic Ceramics, edited by Pizzini, S. TransTech Publications; Zuerich (1993), pp. 81120 Google Scholar
[13] Kelton, K.F., Crystal Nucleation in liquids and glasses, Solid State Physics, Vol.45; Ehrenreich, H., Turnbull, O. Eds. Academic Press (New York) 1991 pp. 75177 Google Scholar
[14] Wagner, R., Kampmann, R., Homogeneous second Phase Precipitation, in Materials Science and Technology, Vol.5 Cahn, R.W., Haasen, P., Kramer, E.J. Edt. VHC, Weinheim, (1991) pp. 213303 Google Scholar
[15] Hu, S.M., J. Electrochem. Soc. 138, (1992) 2066 Google Scholar
[16] Hu, S.M., Phys. Rev. 180,773 (1969)Google Scholar
[17] Estreicher, S.K., Phys.Rev. B 41, 9886 (1990)Google Scholar
[18] Waite, T.R., Phys. Rev. 107,463 (1957)Google Scholar
[19] Murray, R., Graff, K., Pajot, B., Strijkmans, K., Vandendriessche, S., Gripink, B., Marchandise, H., J. Electrochem.Soc. 139,3582 (1992)Google Scholar
[20] Baghdadi, A., Bullis, W.M., Croarkin, M.C., Li, Yue-zhen, Scace, R.I., Series, R.W., Stallhofer, P., Watanabe, M., J. Electrochem. Soc. 136 (1989) 2015 Google Scholar
[21] Acerboni, S., Pizzini, S., Binetti, S., M.Acciarri, , J.Appl.Phys. 76,2703 (1994)Google Scholar
[22] Wada, K., Inue, N. in :Semiconductor Silicon 1986, Vol. 86–4, The Electrochem. Soc. 1986) pp. 778789 Google Scholar
[23] Taylor, W.J., Tan, T.Y., Goesele, U., Appl. Phys. Lett. 62, 3336 (1993)Google Scholar
[24] in: Diffusion in solids, Unsolved problems edited by Murch, G.E., TransTech Publ., Zuerich, (1992) pp. 189206 Google Scholar
[25] Rava, P., Gatos, H.C., Lagowski, J., Appl. Phys. Lett. 38,274 (1981)Google Scholar
[26] Snyder, L.C., Corbett, J.W., Deak, P., Wu, R. in: Defects in Electronic Materials. MRS Volume 104 (1987) pp.179184 Google Scholar
[27] Londos, C.A., McQuaid, S.A., Binns, M.J., Newman, R.C., Tucker, J.H., Solid State Phenomena, Vol.32–32, TransTech Publ. (Zuerich,1993) pp. 161166 Google Scholar
[28] Newman, R.C., Tucker, J.H., McQuaid, S.A., Materials Sci. Forum, Vol. 83–87, TransTech Publ. Zuerich, 1992, pp. 8792 Google Scholar
[29] Glinchuk, K.D., Litovchenko, N.M., Salnik, Z.A., phys. stat. sol. (a) 71, 83 (1982)Google Scholar
[30] in: Defects in Electronic Materials. MRS Volume 104 (1987) pp. 189192 Google Scholar
[31] Kamiura, Y., Endo, K., J. Appl. Phys. 61, 2478 (1987)Google Scholar
[32] Stavola, M., Patel, J.R.. Kimerling, L.C., Freeland, P.E., Appl. Phys. Lett. 42, 73 (1983)Google Scholar
[33] Mikkelsen, J.C., Appl. Phys. Lett. 40,336 (1982)Google Scholar
[34] McQuaid, S.A., Newman, R.C., Tucker, J.H., Lightowlers, E.C., Kubiak, R.A.A., Gouldingd, M., Appl. Phys. Lett. 58, 2933 (1991)Google Scholar
[35] Wert, C.A., Frank, R.C., Ann. Rev. Mater.Sci. 13, 139 (1983)Google Scholar
[36] Leroueille, J., These Universite Pierre et Marie Curie, Paris 6 (1980)Google Scholar
[37] Newman, R.C., Infra-red Studies of crystal defects, Taylor & Francis (London) 1973 Google Scholar
[38] Oehrlein, G.S., Lindstroem, J.L., Corbett, J.W., Appl. Phys. Lett. 40, 241 (1982)Google Scholar
[39] Lindstrom, J.L., Weman, H., Oehrlein, G.S., phy.stat. sol.(a) 99, 581 (1987)Google Scholar
[40] Shimura, F., J.Appl. Phys. 59,3251 (1986)Google Scholar
[41] Pizzini, S., Binetti, S., Acciarri, M., Acerboni, S., phys. stat. sol.(a) 138, 451 (1993)Google Scholar
[42] Lindstrom, J.L., Hallberg, T., Phys. Rev. Lett. 72, 2792 (1994)Google Scholar
[43] Deak, P., Snyder, L.C., Corbett, J.W., Phys. Rev. Lett. 66, 747 (1991)Google Scholar