Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T02:38:27.575Z Has data issue: false hasContentIssue false

Chemistry at the Dirac Point of Graphene: Diels-Alder Approach to Reversible Band Gap Engineering and High Mobility Graphene Devices

Published online by Cambridge University Press:  22 May 2014

Santanu Sarkar*
Affiliation:
Center for Nanoscale Science and Engineering, Departments of Chemistry, University of California, Riverside, California, CA-92521, USA.
Get access

Abstract

The Diels-Alder (DA) pericyclic chemistry is one of the most powerful reactions in synthetic chemistry. We have recently shown that the unique zero-band-gap electronic structure of graphene at the Dirac point facilitates the band-gap-dependent DA reaction of graphene, although graphene is the thermochemical reference for carbon. We have shown that in the DA reactions, graphene can function either as a diene or a dienophile (dual nature). Such DA functionalization of graphene when applied to graphene-FET devices allows balanced functionalization (creation of a pair of new sp3 centers or divacancies) at both A and B graphene sublattices, allowing the fabrication of high mobility DA-functionalized single-layer graphene devices (DA-SLG) with acceptable on/off ratio. The chemistry is thermally reversible via retro-DA chemistry, thus allowing reversible engineering of graphene devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Intel Corporation, Ronler Acres Campus, Hillsboro, Oregon, OR-97124, USA.

References

REFERENCES

Novoselov, K. S., Falko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., Kim, K., Nature 2012, 490, 192.CrossRefGoogle Scholar
Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H. L., Solid State Commun. 2008, 146, 351.Google Scholar
Sarkar, S., Bekyarova, E., Niyogi, S., Haddon, R. C., J. Am. Chem. Soc. 2011, 133, 3324.Google Scholar
Sarkar, S., Bekyarova, E., Haddon, R. C., Mater. Today 2012, 15, 276.CrossRefGoogle Scholar
Bekyarova, E., Sarkar, S., Niyogi, S., Itkis, M. E., Haddon, R. C., J. Phys. D: Appl. Phys. 2012, 45, 154009.Google Scholar
Bekyarova, E., Sarkar, S., Wang, F., Itkis, M. E., Kalinina, I., Tian, X., Haddon, R. C., Acc. Chem. Res. 2013, 46, 65.Google Scholar
Bekyarova, E., Itkis, M. E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W. A., Haddon, R. C., J. Am. Chem. Soc. 2009, 131, 1336.CrossRefGoogle Scholar
Sarkar, S., Bekyarova, E., Haddon, R. C., Angew. Chem. Int. Ed. 2012, 51, 4901.Google Scholar
Sarkar, S., Bekyarova, E., Haddon, R. C., Acc. Chem. Res. 2012, 45, 673.Google Scholar
Yuan, J., Chen, G., Weng, W., Xu, Y., J. Mater. Chem. 2012, 22, 7929.Google Scholar
Sarkar, S., Niyogi, S., Bekyarova, E., Haddon, R. C., Chem. Sci. 2011, 2, 1326.Google Scholar
Tian, X., Sarkar, S., Moser, M. L., Wang, F., Pekker, A., Bekyarova, E., Itkis, M. E., Haddon, R. C., Mater. Lett. 2012, 80, 171.Google Scholar
Sarkar, S., Zhang, H., Huang, J.-W., Wang, F., Bekyarova, E., Lau, C. N., Haddon, R. C., Adv. Mater. 2013, 25, 1131.Google Scholar
Sarkar, S., Moser, M. L., Tian, X., Haddon, R. C., Chem. Mater. 2014, DOI: 10.1021/cm4025809.CrossRefGoogle Scholar