Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T05:00:19.009Z Has data issue: false hasContentIssue false

The Chemistry and Packaging of Nanocomposite Confined Arrays

Published online by Cambridge University Press:  28 February 2011

Galen D. Stucky*
Affiliation:
Department of Chemistry, University of California, Santa Barbara, CA 93106
Get access

Abstract

The miniaturization of electronic and optic devices has revolutionized response times, energy loss and transport efficiency. An additional bonus is that as one approaches the nanosize regime the presence or absence of a few atoms and the geometrical disposition of each atom can significantly modify electronic and photonic properties. This control can be further supplemented by “packaging” assemblies of atoms or molecules into thin film or nanocomposite bulk materials to define surface states, cluster environment and geometry, intercluster interactions, and consequently, a wide tunable range of optical and charge carrier responses.

The chemist is presented with an intriguing challenge. First the clusters must be unisized with identical geometries. Secondly, the atom or molecular assemblies should ideally have perfect periodicity in order to rigorously define optoelectronic densities and intercluster tunnelling. A third requirement is that the nanocomposite be processable, generally in the form of thin films or single crystals. Numerous approaches are being undertaken in achieve these goals, including molecular beam and atomic layer epitaxy, molecular sieve inclusion chemistry, molecular capping of inorganic clusters, porous glass and aerosol synthesis. This paper presents a brief review of the interface chemistry associated with nanophase confinement and packaging and some features of three dimensional surface confinement using molecular sieves and zeolites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L.E., Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, XXXII Valency, 1988, pp. 4562.Google Scholar
2. Steigerwald, M.L. and Brus, L.E., Ann. Rev. Mater. Sci. 19, 471 (1989)Google Scholar
3. Henglein, A., Top. Curr. Chem. 143 113 (1988).Google Scholar
4. Schmitt-Rink, S., Chemla, D.S., and Miller, D. A. B., Adv. Phys., 38, 89 (1989).Google Scholar
5. Miller, D.A.B., Optics &. Photonics, Feb. 7–15 (1990).Google Scholar
6. Ceriotti, A., Demartin, F., Longoni, G., Manassero, M., Marchionna, M., Piva, G. and Sansoni, M., Angew. Chem. Int. Ed. Engl. 24, 697 (1985).Google Scholar
7. Washecheck, D.M., Ph.D. thesis, University of Wisconsin-Madison, 1980.Google Scholar
8. Washecheck, D.M., Wucherer, E. J., Dahl, L. F., Ceriotti, A., Longoni, G., Manassero, M., Sansoni, M. and Chini, P., J. Am. Chem. Soc., 101, 6110 (1979).Google Scholar
9. Schmid, G., Polyhedron, 7, 23212329 (1988).Google Scholar
10. Dance, I.G., Choy, A., Scudder, M.L., J. Am. Chem. Soc. 106, 6285 (1984).CrossRefGoogle Scholar
11. Herath Banda, R. M., Dance, I.G., Bailey, T. D.; Craig, D.C., Scudder, M. L. Inorg. Chem. 28, 1862 (1989).Google Scholar
12. Lee, G.S.H., Fisher, K J., Craig, D.C., Scudder, M.L., and Dance, I.G. J. Am. Chem. Soc. 112, 6434 (1990).Google Scholar
13. Lee, G.S.H., Craig, D. C., Ma, I., Scudder, M. L., Bailey, T. D., and Dance, I. G., J. Am. Chem. Soc. 112, 4863 (1988).Google Scholar
14. Cheng, L.T., Herron, N., Wang, Y., J. Appl. Phys. 66(7), 3417 (1989).Google Scholar
15. Brus, L.E., J. Phys. Chem. 90, 2555 (1986).Google Scholar
16. Steigerwald, M.L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Korten, R., Muller, A.G., Thayer, A.M., Duncan, T.M., and Douglas, D., J. Am. Chem. Soc. 110, 3046 (1988)Google Scholar
17. Herron, N., Wang, Y., Eckert, H., J. Am. Chem. Soc. 112, 1322 (1990).Google Scholar
18. Vargarftik, M.N., Zagorodnikov, V.P., Stoyarov, I.P., Moiseev, I.I., Kikholobov, V.A., et al., J. Chem. Soc. Chem. Comm. 1985. p. 937.Google Scholar
19. Schmid, G., Giebel, U., Huster, W., Schwenk, A., Inorg. Chun. Acta. 25, 97 (1984).Google Scholar
20. Teo, B.K., Hong, M.C., Zhang, H., Huang, D.B., Angew. Chem. Int. Ed. Engl. 26, 897 (1987).Google Scholar
21. Fojtik, A., Weller, H., Koch, U., Henglein, A., Ber. Bunsenges. Phys. Chem. 88, 969 (1984).CrossRefGoogle Scholar
22. Byrne, E.K., Parkanyi, L., Theopold, K., Science 241, 332 (1988).Google Scholar
23. Alivisatos, P. and Wells, R., private communication.Google Scholar
24. Mahler, W., Inorg. Chem. 27, 435 (1988).Google Scholar
25. Rajh, T., Vucemilovic, M.I., Dimitrijevic, N.M., Micic, O.I., Nozik, A.J., Chem. Phys. Lett., 143, 305 (1988).Google Scholar
26. Dameron, C.T., Reese, R.N., Mehra, R.K., Kortan, A.R., Carroll, P.J., Steigerwald, M.L., Brus, L.E., Winge, D.R.,. Nature 338, 596 (1989).CrossRefGoogle Scholar
27. Theil, E. C., ACS Symp. Ser., 372, 179 (1988).Google Scholar
28. Thiel, E. C., Annu. Rev. Biochem., 56, 289 (1987).Google Scholar
29. Lippard, S. J., Angew. Chem. Int. Ed. Engl. 27, 344 (1988).Google Scholar
30. Lippard, S J. et al., J. Am. Chem. Soc. 109, 3337 (1987).Google Scholar
31. O’Brien, S.C., Liu, Y., Zhang, Q., Heath, J.R., Tittel, F.K., Curl, R.F., Smalley, R.E., J. Chem. Phys., 84, 4074 (1986).Google Scholar
32. Kolenbrander, K.D., Mandich, M.L., J. Chem. Phys. 90, 5884 (1989).Google Scholar
33. Zhang, Q., Liu, W., Curl, R.F., Tittel, F.K., Smalley, R.E., AIP Conference Proceedings, 172, (1987); Adv. Laser Sci.-3 (1988).Google Scholar
34. Alford, J.M. and Smalley, R.E., Mater. Res. Soc. Symp. Proc. 131, Chemical Perspectives (1989).Google Scholar
35. Gerhardt, Ph., Loffler, S., and Homann, K. H., Chem. Phys. Lett. 137, 306 (1987).Google Scholar
36. Kratschmer, W., Lamb, L. D., Ïostiropoulous, K., and Huffman, D. R., Nature 347, xxx, (1990).Google Scholar
37. Ishihara, T., Takahashi, J., and Goto, T., Solid St. Commun. 69, 933 (1989).Google Scholar
38. Horikoshi, Y., Kawashima, M., Yamaguchi, H., Jpn. J. Appl. Phys. 25, L868 (1986).Google Scholar
39. Taken from Reed, M.A., Bate, R.T., Bradshaw, K., Duncan, W.M., Frensley, W.R., Lee, J.W., Shih, H.D., J. Vac. Sci. Technol., B4, 358 (1986).Google Scholar
40. Dupuis, R.D., Miller, R.C., Petroff, P.M., J. Crystal Growth, 68 (1), 398 (1984).Google Scholar
41. Miller, R.C., Gossard, A.C., Kleinman, D.A., Munteanu, O., Phys. Rev. B29, 7085 (1984).Google Scholar
42. Petroff, P.M., Gossard, A.C., Logan, R.A., Wiegmann, W., Appl. Phys. Lett. 41 (7), 635 (1982).CrossRefGoogle Scholar
43. Cibert, J., Petroff, P.M., Dolan, G.J., Pearton, S.J., Gossard, A.C., English, J.H., Appl. Phys. Lett. 49, 1275 (1986).Google Scholar
44. McCord, M.A., Pease, R.F.W., J. Vac. Sci. Technol., B5, 437 (1987).Google Scholar
45. Sandroff, C.J., Harbison, J.P., Ramesh, R., Andrejco, M.J., Hedge, M.S., Hwang, D.M., Chang, C.C., Vogel, E.M., Science 245, 391 (1989).Google Scholar
46. Ozin, G., Stein, A., Kuperman, A., Angew. Chem. 101, 373 (1989).Google Scholar
47. Stucky, G.D., MacDougall, J.E., Science (Washington, D. C, 1883-) 247 (4943), 669–78 (1990)Google Scholar
48. For good general references on zeolite Y and molecular sieves in general, see Breck, D. W., “Zeolite Molecular SievesKrieger, Robert E., Publishing Co., Malabar, Fl (1984);Google Scholar
Barrer, R.M., FRS, “Zeolites and Clay Minerals as Sorbents and Molecular Sieves”, Academic Press, New York (1978).Google Scholar
49. Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. and Crowder, C., Nature 331, 698 (1988);Google Scholar
Davis, M. E., Saldarriaga, C., Montes, C., Garces, J. and Crowder, C., Zeolites 8, 362 (1988).Google Scholar
50. Smith, J. V. and Dytrych, W.J., Nature, 309, 607 (1984).Google Scholar
51. Sollner, T. C., Tannenwald, P. E., Peck, D. D., and Goodhue, W. D., Appl. Phys. Lett. 45, 1319 (1984).Google Scholar
52. Nelson, D. F., Miller, R. C., Kleinman, D. A., and Gossard, A. C., Phys. Rev. B. 34, 8671 (1986).Google Scholar
53. Levine, B. F., Choi, K. K., Bethea, C. G., Walker, J., and Malik, R. J., Appl. Phys. Lett. 51, 934 (1987).Google Scholar
54. West, L. C., and Eglash, S. J., Appl. Phys. Lett. 46, 1156 (1985).CrossRefGoogle Scholar
55. Fouassier, C., Levasseur, A., Joubert, J. C., Muller, J., Hagenmuller, P., Z. Anorg. Allg. Chem. 375 (2), 202 (1970).Google Scholar
56. Moran, K.L., Harrison, W.T.A., Gier, T.E., MacDougall, J.E., Stucky, G.D., Mater. Res. Soc. Symp. Proc., 164 (Mater. Issues Microcryst Semicond.), 123–8, (1990) and unpublished results.Google Scholar
57. Stein, A., Macdonald, P. M., Ozin, G. A., and Stucky, G. D., J. Phys. Chem. 94 (18), 6943 (1990).Google Scholar
58. Ozin, G. A., Stein, A., Godber, J. P. and Stucky, G. D., Proc. of the 5th International Symposium on Inclusion Phenomena and Molecular Recognition, Atwood, J, ed, 379 (1990).Google Scholar
59. Stein, A., Ozin, G.A., Stucky, G.D., J. Am. Chem. Soc. 112, 904 (1990).Google Scholar
60. Stein, A., Olzin, G.A. and Stucky, G.D., J. soc. Photogr. Sci. Technol. Japan, 53, 001 (1990).Google Scholar
61. Wang, Y., Herron, N., J. Phys. Chem. 91, (2), 257 (1987).CrossRefGoogle Scholar
62. Wang, Y., Herron, N., J. Phys. Chem. 92 (17), 4988 (1988).Google Scholar
63. Herron, N., Wang, Y., Eddy, M.M., Stucky, G.D., Cox, D.E., Moller, K., Bein, T., J. Am. Chem. Soc. 111 (2), 530 (1989).Google Scholar
64. Moller, K., Eddy, M.M., Stucky, G.D., Herron, N., Bein, T., J. Am. Chem. Soc. 111 (7), 2564 (1989).Google Scholar
65. Liu, X. and Thomas, J.K., Langmuir 5 (1), 58 (1989).Google Scholar
66. Stramel, R.D., Nakamura, T., Thomas, J.K., J. Chem. Soc., Faraday Trans. 184 (5), 1287 (1988).Google Scholar
67. Fox, M.A., Pettit, T.L., Langmuir 5 (4), 1056 (1989).Google Scholar
68. Herron, N., Wang, Y., Eddy, M.M., Stucky, G.D., Cox, D.E., Moller, K., Bein, T., J. Am. Chem. Soc. 111, 530 (1989).Google Scholar
69. Bogomolov, V. N., Lutsenko, E. L., Petranovskii, V. P., Kholodkevich, S. V., Pis’ma Zh. Eksp. Teor. Fiz. 23(9), 528–30 (1976).Google Scholar
70. Bogomolov, V. N., Poborchii, V. V., Kholodkevich, S. V., Pis’ma Zh. Eksp. Teor. Fiz. 31(8), 464–7 (1980).Google Scholar
71. Bogomolov, V. N., Zadorozhnii, A. I., Petranovskii, V. P., Fokin, A. V., Kholodkevich, S. V., Pis’ma Zh. Eksp. Teor. Fiz. 29(7), 411–14 (1979).Google Scholar
72. Bogomolov, V.N., Vendik, I.B., Esipov, V.V., Zadorozhnii, V.V., Pavlova, T.M., Radiotekh. Elektron. (Moscow) 32(9), 2000–2 (1987).Google Scholar
73. Parise, J. B., Mac Dougall, J. E., Herron, N., Farlee, R., Sleight, A. W., Wang, Y., Bein, T., Moller, K., Moroney, L. M., Inorg. Chem. 27(2), 221–8 (1988).Google Scholar
74. Endo, H., Yao, M., Hyomen 25(6), 394–9 (1987).Google Scholar
75. Katayama, Y., Yao, M., Ajiro, Y., Inui, M., Endo, H., J. Phys. Soc. Jpn. 58(5), 1811–22 (1989).Google Scholar
76. Nozue, Y., Tang, Z.K. and Goto, T., Solid State Comm. 73, 531 (1990).Google Scholar
77. Ozkar, S., Ozin, G.A., Moller, K., Bein, T., J. Am. Chem. Soc. 112(26), 9575–86 (1990).Google Scholar
78. Ozin, G.A., Ozkar, S., J. Phys. Chem. 94(19), 7556–62 (1990).CrossRefGoogle Scholar
79. Ozin, G.A., Ozkar, S., Macdonald, P., J. Phys. Chem. 94(18), 6939–43 (1990).Google Scholar
80. Mac Dougall, J.E., Eckert, H., Stucky, G.D., Herron, N., Wang, Y., Moller, K., Bein, T., Cox, D., J. Am. Chem. Soc., 111, 8006 (1989).Google Scholar
81. Bennet, J.M.; Cohen, J.P.; Flanigen, E.M.; Pluth, J.J.; Smith, J.V. in: Intrazeolite Chemistry, ACS Symposium Series 218, eds. Stucky, G.D. and Dwyer, F.G., American Chemical Society: Washington, D.C., 1983, p. 109118.Google Scholar
82. Bennett, J.M., Richardson, J.W. Jr., Pluth, J.J., Smith, J.V., Zeolites, 6, 160 (1987).Google Scholar
83. Davis, M.E., Saldarriaga, C., Montes, C., Garces, J., Crowder, C., Nature 331, 698 (1988); Zeolites 8, 362 (1988).Google Scholar
84. Felsche, J., Luger, S., Baerlocher, Ch., Zeolites 6, 367 (1986).Google Scholar
85. Gard, J.A., Tait, J.M., Acta. Cryst. B28, 825 (1972).Google Scholar
86. Bedard, R.L., Wilson, S.T., Vail, L.D., Bennet, J.M., Flanigen, E.M., “Zeolites: Facts, Figures, Future”, Studies in Surface Science and Catalysis, 49, (1989), Jacobs, P. A. and van Santen, R. A., Eds. 375387.Google Scholar