Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:05:09.228Z Has data issue: false hasContentIssue false

Chemically Stable Semiconductor Surface Layers Using Low-Temperature Grown GaAs

Published online by Cambridge University Press:  03 September 2012

D.B. Janes
Affiliation:
NSF MRSEC for Technology Enabling Heterostructure Materials and School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, [email protected]
S. Hong
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907
V. R. Kolagunta
Affiliation:
NSF MRSEC for Technology Enabling Heterostructure Materials and School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, [email protected]
D. McInturff
Affiliation:
NSF MRSEC for Technology Enabling Heterostructure Materials and School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, [email protected]
T.-B. NG
Affiliation:
NSF MRSEC for Technology Enabling Heterostructure Materials and School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, [email protected]
R. Reifenberger
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907
S.D. West
Affiliation:
NSF MRSEC for Technology Enabling Heterostructure Materials and School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, [email protected]
J.M. Woodall
Affiliation:
NSF MRSEC for Technology Enabling Heterostructure Materials and School of Electrical and Computer Engineering Purdue University West Lafayette, IN 47907, [email protected]
Get access

Abstract

The chemical stability of a GaAs layer structure consisting of a thin (10 nm) layer of low-temperature-grown GaAs (LTG:GaAs) on a heavily n-doped GaAs layer, both grown by molecular beam epitaxy, is described. Scanning tunneling spectroscopy and X-ray photoelectron spectroscopy performed after atmospheric exposure indicate that the LTG:GaAs surface layer oxidizes much less rapidly than comparable layers of stoichiometric GaAs. There is also evidence that the terminal oxide thickness is smaller than that of stoichiometric GaAs. The spectroscopy results are used to confirm a model for conduction in low resistance, nonalloyed contacts employing comparable layer structures. The inhibited surface oxidation rate is attributed to the bulk Fermi level pinning and the low minority carrier lifetime in unannealed LTG:GaAs. Device applications including low-resistance cap layers for field-effect transistors are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pashley, M. D., Haberern, K. W., Friday, W., Woodall, J. M. and Kirchner, P. D., Phys. Rev. Lett. 60, 2176 (1988)Google Scholar
2 Gwo, S., Chao, K. -J., Smith, A. R., Shih, C. K., Sadra, K. and Streetman, B. G., J. Vac. Sci. Technol. B11, 1509 (1993).Google Scholar
3 Melloch, M. R., Woodall, J. M., Harmon, E. S., Otsuka, N., Pollak, F. H., Nolte, D. D., Feenstra, R. M. and Lutz, M. A., Annu. Rev. Mater. Sci 25, 547 (1995).Google Scholar
4 Feenstra, R. M., Woodall, J. M. and Pettit, G. D., Phys. Rev. Lett. 71, 1176 (1993).Google Scholar
5 Feenstra, R. M., Vaterlaus, A., Woodall, J. M. and Pettit, G. D., Appl. Phys. Lett. 63, 2528 (1993).Google Scholar
6 Melloch, M. R., Nolte, D. D., Woodall, J. M., Chang, J. C. P., Janes, D. B. and Harmon, E. S., CRC Critical Rev. in Solid State and Mat. Sci. 21, 189 (1996).Google Scholar
7 Patkar, M. P., Chin, T. P., Woodall, J. M., Lundstrom, M. S. and Melloch, M. R., Appl. Phys. Lett., 66, 1412 (1995).Google Scholar
8 Katnani, A. D., Chiaradia, P., Sang, H. W. Jr. and Bauer, R. S., J. Vac. Sci. Technol. B 2, 471 (1984).Google Scholar
9 Hong, S., Janes, D. B., Mclnturff, D., Reifenberger, R. and Woodall, J. M., Appl. Phys. Lett. 68, 2258 (1996).Google Scholar
10 Dorogi, M., Gomez, J., Osifchin, R., Andres, R. P. and Reifenberger, R., Phys. Rev. B 52, 9071 (1995).Google Scholar
11 Martensson, P. and Feenstra, R. M., Phys. Rev. B 39, 7744 (1988).Google Scholar
12 Ng, T.-B., Janes, D. B., Mclnturff, D. and Woodall, J. M., to appear in Appl. Phys. Lett.Google Scholar
13 Huber, E. and Hartnagel, H. L., Solid State Electron. 27, 589 (1984).Google Scholar
14 Spicer, W. E., Lindau, I., Pianetta, P., Chye, P. W. and Garner, C. M., Thin Solid Films 56, 1 (1979).Google Scholar
15 Ishikawa, T. and Ikoma, H., Jpn. J. Appl. Phys. 31, 3981 (1992).Google Scholar
16 Ohno, H., Motomatsu, M., Mizutani, W. and Tokumoto, H., Jpn. J. Appl. Phys. 34, 1381 (1995).Google Scholar
17 Massies, J. and Contour, J. P., J. Appl. Phys. 58, 806 (1985); J. P. Contour, J. Massies and A. Salettes, Jpn. J. Appl. Phys. 24, L563 (1985).Google Scholar
18 Storm, W., Wolany, D., Schroder, F., Becker, G., Burkhardt, B. Wiedmann, L. and Ben-ninghoven, A., J. Vac. Sci. Technol. B12, 147 (1994).Google Scholar
19 Gerischer, H., J. Vac. Sci. Technol. 15, 1422 (1978).Google Scholar
20 Goddard, W. A. III, Barton, J. J., A. Redondo and McGill, T. C., J. Vac. Sci. Technol. 15, 1274 (1978).Google Scholar
21 Warren, A. C., Woodall, J. M., Kirchner, P. D., Yin, X., Guo, X., Pollak, F. H. and Mel-loch, M. R., J. Vac. Sci. Technol. B 10, 1904(1992); H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon and Y. Lu, Appl. Phys. Lett. 61, 1585 (1992).Google Scholar
22 Melloch, M. R., Miller, D. C. and Das, B., Appl. Phys. Lett. 54, 943 (1989).Google Scholar
23 Pollak, F., private communication.Google Scholar