Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:21:41.032Z Has data issue: false hasContentIssue false

Chemical Vapor Infiltration Process Modeling and Optimization

Published online by Cambridge University Press:  10 February 2011

T. M. Besmann
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6063, [email protected]
W. M. Matlin
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
D. P. Stinton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6063, [email protected]
Get access

Abstract

Chemical vapor infiltration is a unique method for preparing continuous fiber ceramic composites that spares the strong but relatively fragile fibers from damaging thermal, mechanical, and chemical degradation. The process is relatively complex and modeling requires detailed phenomenological knowledge of the chemical kinetics and mass and heat transport. An overview of some of the current understanding and modeling of CVI and examples of efforts to optimize the processes is given. Finally, recent efforts to scale-up the process to produce tubular forms are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bickerdike, R. L., Brown, A. R. G., Hughes, G., and Ranson, H., in Proc. Fifth Conf. Carbon. Vol. I, edited by Mrosowski, S., Studebaker, M. C., and Walker, P. L. (Pergamon Press, NY 1962), pp. 575583.Google Scholar
2. Jenkin, W. C., “Method of Depositing Metals and Metallic Compounds Throughout the Pores of a Porous Body,” U.S. Patent 3,160,517, Dec. 8, 1964 Google Scholar
3. Lackey, W. J. and Starr, T. L., in Fiber Reinforced Ceramic Composites. edited by Mazdiyasni, K. S. (Noyes Publications, Park Ridge, NJ 1990), pp. 397450.Google Scholar
4. Fitzer, E. and Gadow, R., Am. Ceram. Soc. Bull. 65 [2], p. 326 (1986).Google Scholar
5. Naslain, R. and Langlais, F., High Temp. Sci. 27, p. 221 (1990).Google Scholar
6. Besmann, T. M., Sheldon, B. W., Lowden, R. A., and Stinton, D. P., Science 253, p. 1104 (1991).Google Scholar
7. Besmann, T. M., Lowden, R. A., Stinton, D. P., McLaughlin, J. C., Sheldon, B. W., Starr, T. L., and Smith, A. W.. Processing Science for Chemical Vapor Infiltration, Final Report, WL-TR-94–4044, U.S. Air Force Wright Laboratory, 1994.Google Scholar
8. Roman, Y. G. and Stinton, D. P., in Ceramic Matrix Composites - Advanced High-Temperature Structural Materials, edited by Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietro, S. G. (Mater. Res. Soc. Proc. 365, Pittsburgh, PA 1995), p.343350.Google Scholar
9. Besmann, T. M. and Johnson, M. L., in Proceedings of the International Symposium on Ceramic Materials and Components for Engines, edited by Tennery, V. J. (Am, Ceram.Soc., Westerville, OH 1989), pp. 443–56.Google Scholar
10. Besmann, T. M., Sheldon, B.W., Moss, T. S. III, and Kaster, M. D., J. Am Ceram. Soc. 75 [10], p. 2899 (1992).Google Scholar
11. Loumagne, F., Langlais, F., and Naslain, R., J. de Physique IV 3, p. 527 (1993).Google Scholar
12. Lespiaux, D., Langlais, F., Naslain, R., Schamm, S., and Sevely, J., J. Europ. Cer. Soc., p. 81 (1995).Google Scholar
13. Brennfleck, K., Fitzer, E., Schoch, G., and Dietrich, M., in Proceedings of the Ninth International Conference on Chemical Vapor Deposition 1984, edited by Robinson, McD., Brekel, C. H. J. van den, Cullen, G. W., Blocher, J. M. Jr., and Rai-Choudhury, P. (Electrochem. Soc., Pennington, NJ 1984), pp. 649–55.Google Scholar
14. Sheldon, B. W. and Chang, H.-C., Ceramic Trans. 42, p. 81 (1994).Google Scholar
15. Freeman, G. B., Starr, T. L. and Elston, T. C., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc., Pittsburgh, PA 1990), pp. 4954.Google Scholar
16. Starr, T. L., in Proceedings of the Tenth International Conference on Chemical Vapor Deposition 1987, edited by Cullen, G. W. (Electrochem. Soc., Pennington, NJ 1987), pp.1147–55.Google Scholar
17. Chang, H.-C., Morse, T. F., and Sheldon, B. W., “Minimizing Infiltration Times During Isothermal Chemical Vapor Infiltration With Chlorosilanes,” submitted to the J. Am. Ceram. Soc.Google Scholar
18. Sheldon, B. W. and Besmann, T. M., J. Am. Ceram. Soc. 74 [12], p. 3046 (1991).Google Scholar
19. Kinney, J. K., Breunig, T. M., Starr, T. L., Haupt, D., Nichols, M. C., Stock, S. R., Butts, M. D., and Saroyan, R. A., Science 260, p. 789 (1993).Google Scholar
20. Starr, T. L., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc., Pittsburgh, PA 1992), pp. 207–14.Google Scholar
21. Chang, H.-C., Morse, T. F., and Sheldon, B. W., J. Materials Proc. and Manuf. Sci. 2, p. 437(1994).Google Scholar
22. Starr, T. L., J. Mat. Sci. 10 [9], p.1 (1995).Google Scholar
23. Sheldon, B. W., personal communication.Google Scholar
24. Besmann, T. M., McLaughlin, J. C., and Starr, T. L. in Proceedings of the 18th Annual Conference on Composites and Advanced Materials-B, edited by Logan, K. V. (Ceramic Engineering and Science Proceedings 15 [5], Westerville, OH 1994), p. 897907.Google Scholar