Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T05:29:03.461Z Has data issue: false hasContentIssue false

Chemical Solution Deposited BaTi03 AND SrTi03 Thin Films With Columnar Microstructure

Published online by Cambridge University Press:  15 February 2011

S. Hoffmann
Affiliation:
Institut für Werkstoffe der Elektrotechnik, RWTH Aachen, University of Technology, 52056 Aachen, Germany
U. Hasenkox
Affiliation:
Institut für Werkstoffe der Elektrotechnik, RWTH Aachen, University of Technology, 52056 Aachen, Germany
R. Waser
Affiliation:
Institut für Werkstoffe der Elektrotechnik, RWTH Aachen, University of Technology, 52056 Aachen, Germany
C. L. Jia
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Get access

Abstract

We show that CSD processing can be optimized in order to achieve columnar structured BaTiO3 and SrTiO3 thin films at elevated temperatures. In addition to these, columnar grain growth was also obtained for films of the solid solution (Ba0.7Sr0.3)TiO3 By controlling the film formation process, polycrystalline and columnar grained thin films were grown on Pt coated Si substrates at temperatures between 750° and 800°. The films were analyzed by glancing incidence X-ray diffraction and scanning electron microscopy. Detailed analysis on the thin films’ microstructure was performed by means of transmission electron microscopy. Based on these data, the film formation process is discussed with respect to process control and precursor chemistry. Differences in the crystallization process of BaTiO3 thin films compared to SrTiO3 films are pointed out.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujii, E., Uemoto, Y., Hayashi, S., Našu, T., Shimada, Y., Matsuda, A., Kibe, M., Azuma, M., Otsuki, T., Kano, G., Scott, M., Paz de Araujo, C. A., IEDM Conf., Dec. 1992 Google Scholar
2. Gnade, B. E., Summerfelt, S. R., Crenshaw, D., in Science and Technology of Electroceramic Thin Films (Eds. Auciello, O. and Waser, R.), NATO ASI Sries E284, Kluwer, 1995, p. 373.Google Scholar
3. Krupanidhi, S. B., in Science and Technology of Electroceramic Thin Films (Eds. Auciello, O. and Waser, R.), NATO ASI Sries E284, Kluwer, Dordrecht 1995, p. 23.Google Scholar
4. Hoffmann, S., Waser, R., Proc. Int. Symp. on Integrated Ferroelectrics, Santa Fe, March 1997.Google Scholar
5. Cotell, C. M., Horwitz, J. S., Sprague, J. A., Auyueng, R. C. Y., et al., Mat. Sci. Eng. B32, 221 (1995).Google Scholar
6. Abe, K., Komatsu, S., J. Appl. Phys., 77, 6461 (1995).Google Scholar
7. Basceri, C., Streiffer, S. K., Kingon, A. I., Bilodeau, S., Cari, R., van Buskirk, P. C., Summerfelt, S. R., Mclntyre, P., Waser, R., Mat. Res. Soc. Symp. Proc, 433, 285 (1996).Google Scholar
8. Huffman, M., in Ferroelectric Thin Film Memory ICs. Science Forum Inc., Japan 1995, p. 145.Google Scholar
9. Reaney, I. M., Brooks, K., Klissurska, R., Pawlaczyk, C., Setter, N., J. Am. Ceram. Soc, 77, 1209 (1994).Google Scholar
10. Schwartz, R. W., Voigt, J. A., Tuttle, B. A., Payne, D. A., et al., J. Mater. Res., accepted 1996.Google Scholar
11. Hayashi, T., Oji, N., Maiwa, H., Jpn. J. Appl. Phys. 33, 5277 (1994).Google Scholar
12. Wu, Y., Jacobs, E. G., Pinizzotto, R. F., Tsu, R., et al., Mat. Res. Soc. Symp. Proc, 361, 269 (1995).Google Scholar
13. Tsu, R., Liu, H.-Y., Hsu, W.-Y., Summerfelt, S., et al., Mat. Res. Soc. Symp. Proc, 361, 275 (1995).Google Scholar
14. Seifert, A., Lange, F. F., Speck, J. S., J. Mat. Res., 10, 680 (1995).Google Scholar
15. Mecartney, M. L., Gust, M., 7th Int. Syp. Integrated Ferroelectrics, 1995.Google Scholar
16. Hasenkox, U., Hoffmann, S., Waser, R., submitted to J. of Sol-Gel Science and Technology.Google Scholar
17. Jia, C. L., Urban, K., Hoffmann, S., Waser, R., submitted to J. Mater. Res‥Google Scholar
18. Hennings, D., Rosenstein, G., Schreinemacher, H., J. Europ. Ceram. Soc, 8, 107 (1991).Google Scholar
19. Arima, M., Kakihana, M., Yashima, M., Yoshimura, M., Eur. J. Solid State Inorg. Chem., 32, 863 (1995).Google Scholar
20. Gopalakrishnamurthy, H. S., Subba Rao, M., Kutty, T. R. N., J. Inorg. Nucl. Chem., 37, 891 (1975).Google Scholar
21. Langjahr, P. A., Wagner, T., Riihle, M., Lange, F. F., Mat. Res. Soc. Symp. Proc, 401, 109 (1996).Google Scholar
22. Miller, K. T., Lange, F. F., Marshall, D. B., J. Mater. Res., 5, 151 (1990).Google Scholar
23. Miller, K. T., Lange, F. F., J. Mater. Res., 6, 2387 (1991).Google Scholar
24. Lange, F. F., Science, 273, 903 (1996).Google Scholar
25. Ohya, Y., Saiki, H., Tanaka, T., Takahashi, Y., J. Am. Ceram. Soc, 79, 825 (1996).Google Scholar
26. Lange, F. F., Proc Electroceramics IV Conference, Sept. 1994, Aachen, Germany. Google Scholar