Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:59:31.769Z Has data issue: false hasContentIssue false

Chemical Imaging of InGaAs/InAiAs Quantum Wells

Published online by Cambridge University Press:  10 February 2011

G. Mountjoy
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
P. A. Crozier
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
P. L. Fejes
Affiliation:
Motorola Inc., Materials Research and Strategic Technologies, Mesa, AZ 85202
R. K. Tsui
Affiliation:
Motorola Inc., Phoenix Corporate Research Laboratories, 2100 E. Elliot Rd., Tempe, AZ 85284
G. D. Kramer
Affiliation:
Motorola Inc., Phoenix Corporate Research Laboratories, 2100 E. Elliot Rd., Tempe, AZ 85284
Get access

Abstract

We have applied high resolution chemical imaging in a transmission electron microscope to study compositional variations across InGaAs/InAIAs double quantum well structures. The structures of interest are grown on an InP substrate and consist of two 40 Å layers of InGaAs separated by 20 Å of InAlAs. For this (InGa)x(InAl)1-xAs system, we have been able to obtain compositional information with an accuracy of about 20 % and a maximum spatial resolution of 1/2 × 1/2 unit cell. The results clearly show irregularities on a monatomic scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ho, P., Kao, J.M., Chao, P.C., Duh, K.H.G., Ballingall, J.M., Allen, T.S., Tessmer, A.J. and Smith, P.M., Electronic Lett. 27, 325 (1991).Google Scholar
2. See, for example, “GaInAsP Alloy Semiconductors,” edited by Pearsall, T.P. (Wiley, Chichester, 1982).Google Scholar
3. Hong, W-P., Singh, J. and Bhattacharya, P.K., IEEE Electron Device Lett. EDL–7, 480 (1986).Google Scholar
4. Koff, R.F., Schubert, E.F., Harris, T.D. and Becker, R.S., Appl. Phys. Lett. 58, 631 (1991).Google Scholar
5. Ourmazd, A., Baumann, F.H., Bode, M. and Kim, Y, Ultramicroscopy 34, 237 (1990).Google Scholar
6. Kisielowski, C., Schwander, P., Baumann, F.H., Seibt, M., Kim, Y. and Ourmazd, A., Ultramicroscopy 58, 131 (1995).Google Scholar
7. Stenkamp, D. and Jäger, W., Ultramicroscopy 50, 321 (1993).Google Scholar
8. Thoma, S. and Cerva, H., Ultramicroscopy 38, 265 (1991).Google Scholar
9. Baumann, F.H., Huang, J.H., Rentschier, J.A., Chang, T.Y. and Ourmazd, A., Phys. Rev. Lett. 73, 448 (1994).Google Scholar
10. Mountjoy, G. et. al., Ultramicroscopy (Submitted).Google Scholar
11. Ishizuka, K., Ultramicroscopy 5, 55 (1980).Google Scholar
12. Shen, J., Tehrani, S., Kramer, G., Goronkin, H., Tsui, R., Allen, S. and Kyler, M., p. 1289, Inst. Phys. Conf. Ser. No. 145 (Bristol, IOP, 1996).Google Scholar
13. Chew, N.G. and Cullis, A.G., Ultramicroscopy 23, 175 (1987).Google Scholar
14. Brown, A.S., Metzger, R.A., Henige, J.A., Nguyen, L., Lui, M. and Wilson, R.G., Appl. Phys Lett. 59, 3610 (1991).Google Scholar
15. Stanchina, W.E., Metzger, R.A., Jensen, J.F., Rensch, D.B., Pierce, M.W., Delaney, M.J., Wilson, R.G., Kargodorian, T.V. and Allen, Y.K., Proceedings of the 2nd International Conf. on InP and Related Materials p. 13 (1990).Google Scholar
16. Motohisa, J. and Sakaki, H., Appl. Phys. Lett. 60, 1315 (1992).Google Scholar