Article contents
Chemical Design and Structural Chemistry of Lwir Optical Materials
Published online by Cambridge University Press: 25 February 2011
Abstract
Some applications for long-wavelength infrared (LWIR) windows require environmental durability and mechanical strength in addition to infrared optical transparency; i.e., the windows must simultaneously serve as optical and as structural ceramics. The requirement of optical transparency at long IR wavelengths eliminates from consideration all ceramics based on oxides and other light-anion compounds, making this a particularly difficult materials problem. The structure-property relationships and chemical rationale used to guide both the screening of known compounds and the synthesis of new compounds likely to possess the desired properties rely on factors such as atomic mass, electronic configuration, coordination number, and crystal structure type.
Our research has included the directed synthesis and characterization of a number of ternary indium sulfides as well as ternary calcium yttrium sulfides. Ternary indium sulfides feature both tetrahedral and octahedral coordination of indium. The crystal structure of KInS2 and its relationship to structures observed in other systems such as AIn2S4, A = Ca,Sr,Ba, is described. The crystal structure of CaY2S4 along with studies of yttrium-doped CaS are also described. The AIn2S4 compounds are more fully described in references [1] and [2].
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
REFERENCES
- 3
- Cited by