Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T23:52:29.314Z Has data issue: false hasContentIssue false

Chemical and Sonochemical Approaches to the Formation of VO2 Films and VO2-Impregnated Materials

Published online by Cambridge University Press:  10 February 2011

V. Keppens
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge TN 37831–6056
D. Mandrus
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge TN 37831–6056
L. A. Boatner
Affiliation:
Oak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge TN 37831–6056
Get access

Abstract

A new chemical and chemical/ultrasonic approach to the preparation of VO2 films and VO2-impregnated bulk materials has been developed. In this approach, a V2O5 sol prepared by quenching is used to coat SiO2 substrates. The resulting gel-film is heat treated in a reducing atmosphere to form a film identified as VO2 from the results of X-ray diffraction and both optical and resistivity measurements, which reveal the phase transition characteristic of vanadium dioxide. The advantage of this approach to the formation of VO2 is that the V2O5 sol can be used to impregnate porous materials, which are then heat treated to form an optically active composite material. The switching properties of the VO2 films are investigated using optical and resistivity measurements, and the results are compared to those obtained for VO2-films prepared by more-conventional methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morin, F. J., Phys. Rev. Lett. 3, 34 (1959).Google Scholar
2. Smith, A. W., Appl. Phys. Lett. 23, 437 (1973).Google Scholar
3. Balberg, I. and Trokman, S., J. Appl. Phys. 46, 2111 (1975).Google Scholar
4. Fan, J. C. C., H, , Fetterman, R., Bachner, F. J., Zavracky, P. M., and Parker, C. D., Appl. Phys. Lett. 31, 1 (1977).Google Scholar
5. Jorgenson, C. V. and Lee, J. C, Solar energy Materials 14, 205 (1986).Google Scholar
6. MacChesney, J. B., potter, J. F., and Guggenheim, H. J., J. Electrochem. Soc 115, 52 (1968).Google Scholar
7. Case, F. C., Applied Optics 28, 2731 (1989).Google Scholar
8. Razavi, A., Hughes, T., Antinovitch, J., and Hoffman, J., J. Vac. Sci. Technol. A 7, 1310 (1989).Google Scholar
9. Choi, H. S., Ahn, J. S., Jung, J. H., Noh, T. W., and Kim, D. H., Phys. Rev. B 54, 4621 (1996).Google Scholar
10. Speck, K. R., Hu, H. S.-W., Sherwin, M. E., and Potember, R. S., Thin Solid films 165, 317 (1988).Google Scholar
11. Partlow, D. P., Gurkovich, S. R., Radford, K. C, and Denes, L. J., J. Appl. Phys. 70, 443 (1991).Google Scholar
12. Dachuan, Y., Niankan, X., Jingyu, Z., and Xiulin, Z., Mat. Res. Bull, 31, 335 (1996); J. Phys. D 29, 1051 (1996).Google Scholar
13. Gea, L. A. and Boatner, L. A., Appl. Phys. Lett. 68, 3081 (1996);Google Scholar
Gea, L. A., Boatner, L. A., Budai, J. D., and Zuhr, R. A., in Ion-Solid Interactions for Materials Modification and Processing, edited by Poker, D. B., Ila, D., Cheng, Y.-T., Harriott, L. R., and Sigmon, T. W. (Mat. Res. Soc. Proc. 396, Pittsburgh, PA, 1996) pp. 215220.Google Scholar
14. Flynn, H. G. in Physical acoustics, edited by Mason, W. P. (Academic Press, New York. 1964) 1B, p57.Google Scholar
15. De La Rosa-Fox, N., Esquivias, L., and Zarzycki, J., J. Mater. Sci. Lett. 10, 1237 (1991).Google Scholar
16. Pinero, M., Atik, M., and Zarzycki, J., J. Non-Cryst. Solids 174&148, 523 (1992).Google Scholar
17. Levy, D. and Esquivias, L., Adv. Mater. 7, 120 (1995).Google Scholar
18.JCPDS-ICDD, 12 Campus Boulevard, Newton Square, PA 19073–3273.Google Scholar
19. Greenberg, C. B., Thin Solid films, 110, 73 (1982).Google Scholar
20. Case, F. C., J. Vac. Sci. Technol. A8, 1395 (1990).Google Scholar
21. Chain, E. E., Applied Optics 30, 2782 (1991).Google Scholar