Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:31:37.292Z Has data issue: false hasContentIssue false

Charge State of Copper-Silicide Precipitates in Silicon and its Application to the Understanding of Copper Precipitation Kinetics

Published online by Cambridge University Press:  10 February 2011

A.A. Istratov
Affiliation:
Department of Materials Science, University of California, Berkeley CA 94720-1760
O.F. Vyvenko
Affiliation:
Institute of Physics of St.-Petersburg State University, 198904Russia
C. Flink
Affiliation:
Department of Materials Science, University of California, Berkeley CA 94720-1760
T. Heiser
Affiliation:
Department of Materials Science, University of California, Berkeley CA 94720-1760
H. Hieslmair
Affiliation:
Department of Materials Science, University of California, Berkeley CA 94720-1760
E.R. Weber
Affiliation:
Department of Materials Science, University of California, Berkeley CA 94720-1760
Get access

Abstract

Deep level spectra obtained on n-type silicon samples after copper diffusion and rapid quench give evidence of a positive charge state of the precipitates in p-type silicon. Non-exponential precipitation behavior of interstitial Cu is demonstrated and explained. The possibility of Coulomb interaction between copper ions and copper precipitates is suggested and its influence on Cu precipitation kinetics is disCussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Istratov, A.A. and Weber, E.R., Appl.Phys.A: Mater.Sci.&Process. 66, 123 (1998).Google Scholar
2. Istratov, A.A., Hedemann, H., Seibt, M., Vyvenko, O.F., Schröter, W., Flink, C., Heiser, T., Hieslmair, H. and Weber, E.R., in Semiconductor Silicon-1998, editors: Huff, H., Gösele, U., Tsuya, H. (The Electrochem.Soc., Pennington, NJ, 1998), in print.Google Scholar
3. Omling, P., Weber, E.R., Montelius, L. and Alexander, H., Phys.Rev.B 32, 6571, (1985)Google Scholar
4. Schröter, W., Kronewitz, J., Gnauert, U., Riedel, F. and Seibt, M., Phys.Rev.B 52, 13726 (1995).Google Scholar
5. Hedemann, H. and Schröter, W., Journal de Physique III, 7, 1389 (1997).Google Scholar
6. Hedemann, H., Ph.D. thesis, Cuvillier-Verlag Göttingen, ISBN 3-89588-377-8 (1995).Google Scholar
7. Schröter, W. and Labusch, R., phys.stat.sol. 36, 539 (1969).Google Scholar
8. Kittler, M., Lärz, J., Seifert, W., Seibt, M. and Schröter, W., Appl. Phys. Lett. 58, 911 (1991).Google Scholar
9. Kittler, M. and Seifert, W., phys. stat. sol. (a) 150, 463 (1995).Google Scholar
10. Weber, E.R., Appl.Phys.A: Solids Surf. 30, 1 (1983).Google Scholar
11. Brunwin, R., Hamilton, B., Jordan, P. and Peaker, A.R., Electron.Lett. 15, 349 (1979).Google Scholar
12. Davidson, J.A. and Evans, J.H., J.Appl.Phys. 81, 251 (1997).Google Scholar
13. Hedemann, H., to be published.Google Scholar
14. Article in preparation.Google Scholar
15. Reiss, H., Fuller, C.S. and Morin, F.J., The Bell System Technical J. 35, 535 (1956).Google Scholar
16. Heiser, T. and Mesli, A., Appl.Phys.A: Solids&Surf. 30, 1 (1993).Google Scholar
17. Istratov, A.A., Flink, C., Heiser, T., Hieslmair, H. and Weber, E.R., Phys.Rev.Letters, to be published.Google Scholar
18. Ham, F.S., J.Phys.Chem.Solids 6, 335 (1958).Google Scholar
19. Flink, C., to be published.Google Scholar
20. Rouvimov, S., Istratov, A.A., unpublished.Google Scholar
21. Seibt, M., Grieβ, M., Istratov, A.A., Hedemann, H., Sattler, A. and Schröter, W., phys.stat.sol.(a) 166, 171 (1998).Google Scholar