Published online by Cambridge University Press: 15 March 2011
Charge controlled power switching devices fabricated in 4H-Silicon Carbide are discussed in this paper. After comparing possible structures, results on prototype devices are presented. The presentation will give an overview about the developments of SiC power switches at SiCED, in addition some potential applications serving as an accelerator for the SiC power switch development will be sketched. The performance of vertical JFETs will be analyzed in detail. These can be operated as a single device as well as in combination with a low voltage silicon power MOSFET. The result of the hybrid assembly is a normally off device which behaves for the user more and more like a classical MOSFET with respect to the input as well as the output characteristic. Several improvements where performed which make the device more attractive for the customer. It will be shown which factors drive these optimization and how they can be implemented. Although the primary target for this device is the >1000V blocking voltage range, it will be discussed how the huge 600V power switch market can be made accessible for SiC power devices too. Intensively the high temperature performance of SiC JFETs and Si/SiC cascodes is discussed. Additionally, other developments like silicon power MOSFETs or high voltage switches will be mentioned.